Open Access
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 03001
Number of page(s) 6
Section Power to X and Thermal Storages
Published online 16 February 2021
  1., International Energy Agency (IEA) official website, last access 28/7/2020. [Google Scholar]
  2., European Commission official website, last access 28/7/2020. [Google Scholar]
  3. Ferrari M., Rivarolo M., Massardo A.F., Hydrogen production system from photovoltaic panels: experimental characterization and size optimization, En. Conv. and Man., 116 (2016), 194-202. [Google Scholar]
  4. Bellotti D., Rivarolo M., Magistri L., Massardo A.F., Thermo-economic comparison of hydrogen and hydro-methane produced from hydroelectric energy for land transportation, Int. J. Hydrogen En., 2015 (40), 2433-2444. [Google Scholar]
  5. Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives, Int. J. Hydrogen En., 42 (2017), 7254-7262. [Google Scholar]
  6. Moradi R., Groth K.M., Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis, Int. J. Hydrogen En., 44 (2019), 12254-12269. [Google Scholar]
  7. Proost J., State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings, Int. J. Hydrogen En., 44 (2019), 4406-4413. [Google Scholar]
  8. D. Bellotti, M. Rivarolo, L. Magistri, Economic feasibility of methanol synthesis as a method for CO2 reduction and energy storage, En. Proc., 158 (2019), 4721-4728. [Google Scholar]
  9. American Bureau of Shipping (ABS), setting the course to low carbon shipping (2019). [Google Scholar]
  10. Bellotti D., Sorce A., Rivarolo M., Magistri L., Techno-economic analysis for the integration of a power to fuel system with a CCS coal power plant, J. CO2 Utilization, 33 (2019), 262-272. [Google Scholar]
  11. Andersson J., Lundgren J., Techno-economic analysis of ammonia production via integrated biomass gasification, App. En., 130 (2014), 484-490. [Google Scholar]
  12. A. Klerke, C.H. Christensen, J.K. Norskov, T. Vegge, Ammonia for hydrogen storage: challenges and opportunities, J. Mater. Chem., 2008, 18, 2304-2310. [Google Scholar]
  13. K.E. Lamb, M.D. Dolan, D.F. Kennedy, Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification, Int. J. of Hydrogen En., 2019, 44, 3580-3593. DOI: 10.1016/j.ijhydene.2018.12.024 [Google Scholar]
  14. Rivarolo M., Riveros-Godoy G., Magistri L., Massardo A.F., Clean hydrogen and ammonia synthesis in Paraguay from Itaipu 14 GW hydroelectric plant, Chem Engineering, 3 (2019), 111. [Google Scholar]
  15. D. Bellotti, L. Cassettari, M. Mosca, L. Magistri, RSM approach for stochastic sensitivity analysis of the economic sustainability of a methanol production plant using renewable energy sources, J. Clean. Prod., Vol. 240, p. 117-947, 2019, DOI: 10.1016/j.jclepro.2019.117947. [Google Scholar]
  16. Zhang H., Wang L., Van Herle J., Maréchal F., Desideri U., Techno-economic comparison of green ammonia production processes, App. En., 259 (2020), 114-135. [Google Scholar]
  17. Morgan E.R., Techno-economic feasibility study of ammonia plants powered by off-shore wind, 2013, Open Access Dissertations, 697. [Google Scholar]
  18. S. Szima and C. C. Cormos, Improving methanol synthesis from carbon-free H2 and captured CO2: A techno-economic and environmental evaluation, J. CO2 Util., Vol. 24, no. February, pp. 555–563, 2018 [Google Scholar]
  19. Sanchez A., & Matin M., Optimal renewable production of ammonia from water and air, Journal of Cleaner Production 178 (2018), 325-342 [Google Scholar]
  20. Tunå P., Hulteberg C., Ahlgren S. Techno‐ economic assessment of nonfossil ammonia production, Environ. Prog. Sustainable Energy, 2014 (33), 1290-1297. doi:10.1002/ep.11886 [Google Scholar]
  21. Bicer Y., Dincer I., Vezina G., Raso F., Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes, Environmental Management, 2017 (59), 842-855. [CrossRef] [PubMed] [Google Scholar]
  22. Al-Breiki M., Bicer Y., Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses, Int. J. of Hydrogen En., 2020. [Google Scholar]
  23. Rivarolo M, Improta O., Magistri L., Panizza M., Barbucci A., Thermo-economic analysis of a hydrogen production system by sodium borohydride (NaBH4), Int. J. Hydrogen En., 43 (2018), 1606-1614. [Google Scholar]
  24. Schmidt O., Gambhir A., Staffell I., Hawkes A., Nelson J. and Few S., Future cost and performance of water electrolysis: An expert elicitation study, Int. J. Hydrogen En., 42 (2017), 30470–30492. [Google Scholar]
  25. Proost J., State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings, Int. J. Hydrogen En., 44 (2019), 4406-4413. [Google Scholar]
  26. Thomas, D., Cost reduction potential for electrolyser technology, EU Power-to-Gas Platform [Google Scholar]
  27. Institute for Sustainable Process Technology, Power to Ammonia, final report. [Google Scholar]
  28., last access 28/7/2020. [Google Scholar]
  29., last access 30/9/2020. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.