Open Access
Issue |
E3S Web Conf.
Volume 246, 2021
Cold Climate HVAC & Energy 2021
|
|
---|---|---|
Article Number | 10006 | |
Number of page(s) | 10 | |
Section | Performance Assessment and Characterization | |
DOI | https://doi.org/10.1051/e3sconf/202124610006 | |
Published online | 29 March 2021 |
- A. Grzebielec, A. Rusowicz, and A. Ruciński, “Analysis of the performance of the rotary heat exchanger in the real ventilation systems,” in 9th International Conference on Environmental Engineering, ICEE 2014, 2014. [Google Scholar]
- Z. Liu, W. Li, Y. Chen, Y. Luo, and L. Zhang, “Review of energy conservation technologies for fresh air supply in zero energy buildings,” Applied Thermal Engineering, vol. 148. pp. 544–556, 2019. [Google Scholar]
- D. O’connor, J. K. S. Calautit, and B. R. Hughes, “A review of heat recovery technology for passive ventilation applications,” Renewable and Sustainable Energy Reviews, vol. 54. pp. 1481–1493, 2016. [Google Scholar]
- L. Schibuola, M. Scarpa, and C. Tambani, “Performance optimization of a demand controlled ventilation system by long term monitoring,” Energy Build., vol. 169, pp. 48–57, 2018. [Google Scholar]
- A. Meiss, M. Á. Padilla-Marcos, I. Poza-Casado, and A. Álvaro-Tordesillas, “A graphical tool to estimate the air change efficiency in rooms with heat recovery systems,” Sustain., vol. 12, no. 3, 2020. [Google Scholar]
- V. Misevičiūtė, K. Valančius, V. Motuzienė, and G. Rynkun, “Analysis of exergy demand for air heating of an air handling unit / Violeta Misevičiūtė, Kęstutis Valančius, Violeta Motuzienė, Genrika Rynkun.,” Energy Effic., vol. 10, no. 4, pp. 989–998, 2017. [Google Scholar]
- V. Misevičiūtė, K. Valančius, V. Motuzienė, and G. Rynkun, “Analysis of exergy demand for air heating of an air handling unit,” Energy Effic., vol. 10, no. 4, pp. 989–998, 2017. [Google Scholar]
- V. Martinaitis, G. Streckiene, A. Bagdanavicius, and J. Bielskus, “A comparative thermodynamic analysis of air handling units at variable reference temperature,” Appl. Therm. Eng., vol. 143, pp. 385–395, 2018. [Google Scholar]
- A. Abdul Hamid, D. Johansson, and M. Lempart, “Determining the impact of air-side cleaning for heat exchangers in ventilation systems,” Build. Serv. Eng. Res. Technol., vol. 41, no. 1, pp. 46–59, 2020. [Google Scholar]
- A. Hamburg, K. Kuusk, A. Mikola, and T. Kalamees, “Realisation of energy performance targets of an old apartment building renovated to nZEB,” Energy, vol. 194, 2020. [Google Scholar]
- A. Jedlikowski and S. Anisimov, “Analysis of the frost formation and freeze protection with bypass for cross-flow recuperators,” Appl. Therm. Eng., vol. 116, pp. 731–765, 2017. [Google Scholar]
- A. Pacak, A. Jedlikowski, D. Pandelidis, and S. Anisimov, “Analysis of freeze protection methods for recuperators used in energy recovery from exhaust air,” in E3S Web of Conferences, 2017, vol. 22. [Google Scholar]
- A. Jedlikowski, S. Anisimov, J. Danielewicz, M. Karpuk, and D. Pandelidis, “Frost formation and freeze protection with bypass for counter-flow recuperators,” Int. J. Heat Mass Transf., vol. 108, pp. 585–613, 2017. [Google Scholar]
- J. M. Rey-Hernández, S. L. González, J. F. San José-Alonso, A. Tejero-González, E. Velasco-Gómez, and F. J. Rey-Martínez, “Smart energy management of combined ventilation systems in a nZEB,” in E3S Web of Conferences, 2019, vol. 111. [Google Scholar]
- A. Prouzeau, M. B. Dharshini, M. Balasubramaniam, J. Henry, N. Hoang, and T. Dwyer, “Visual Analytics for Energy Monitoring in the Context of Building Management,” in 2018 International Symposium on Big Data Visual and Immersive Analytics, BDVA 2018, 2018. [Google Scholar]
- S. Borjigin, S. Zhang, M. Zeng, Q. Wang, and T. Ma, “Coupling ε-NTU method for thermal design of heat exchanger in cabinet cooling system,” Appl. Therm. Eng., vol. 159, 2019. [Google Scholar]
- S. H. Noie, “Investigation of thermal performance of an air-to-air thermosyphon heat exchanger using ε-NTU method,” Appl. Therm. Eng., vol. 26, no. 5–6, pp. 559–567, 2006. [Google Scholar]
- H. Jaber and R. L. Webb, “Design of cooling towers by the effectiveness-NTU method,” J. Heat Transfer, vol. 111, no. 4, pp. 837–843, 1989. [Google Scholar]
- H. A. Navarro and L. C. Cabezas-Gómez, “Effectiveness-ntu computation with a mathematical model for cross-flow heat exchangers,” Brazilian J. Chem. Eng., vol. 24, no. 4, pp. 509–521, 2007. [Google Scholar]
- R. Adamovský, D. Adamovský, and D. Herák, “Exergy of heat flows of the air-to-air plate heat exchanger,” Res. Agric. Eng., vol. 50, no. No. 4, pp. 130–135, 2018. [Google Scholar]
- European Commitree of Standardization, “EN 308:1997. Heat Exchangers - Test Procedures For Establishinng Performance of Air to Air and Flue Gases Heat Recovery Devices,” 1997. [Google Scholar]
- T. L. Bergman and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 8th editio. Wiley, 2017. [Google Scholar]
- L.-Z. Zhang, Total heat recovery : heat and moisture recovery from ventilation air. New York: Nova Science Publishers, Inc., 2008. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.