Open Access
Issue
E3S Web Conf.
Volume 246, 2021
Cold Climate HVAC & Energy 2021
Article Number 11003
Number of page(s) 8
Section Advanced HVAC Control
DOI https://doi.org/10.1051/e3sconf/202124611003
Published online 29 March 2021
  1. O. A. Seppänen, W. J. Fisk, and M. J. Mendell, “Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings,” Indoor air, 9(4), 226–252, 1999. [CrossRef] [PubMed] [Google Scholar]
  2. J. Sundell, H. Levin, W. W. Nazaroff, W. S. Cain, W. J. Fisk, D. T. Grimsrud, ... and J. M. Samet, ” Ventilation rates and health: multidisciplinary review of the scientific literature,” Indoor air, 21(3), 191–204, 2011. [PubMed] [Google Scholar]
  3. P. Wargocki, J. Sundell, W. Bischof, G. Brundrett, P.O. Fanger, F. Gyntelberg, S.O. Hanssen, P. Harrison, A. Pickering and O. Seppänen, “Ventilation and health in non-industrial indoor environments: report from a European multidisciplinary scientific consensus meeting (EUROVEN).” Indoor Air, vol. 12, pp. 113–128, 2002. [CrossRef] [Google Scholar]
  4. U. Haverinen-Shaughnessy, R. J. Shaughnessy, E. C. Cole, O. Toyinbo, and D. J. Moschandreas, “An assessment of indoor environmental quality in schools and its association with health and performance”, Building and Environment, 93, 35–40, 2015. [Google Scholar]
  5. P. Wargocki, and D. P. Wyon, “The effects of outdoor air supply rate and supply air filter condition in classrooms on the performance of schoolwork by children (RP-1257),” HVAC&R Research, 13(2), 165–191, 2007. [Google Scholar]
  6. J. M. Daisey, W. J. Angell, and M. G. Apte, “Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information,” Indoor air, 13(1), 53–64, 2003. [CrossRef] [PubMed] [Google Scholar]
  7. Z. Bakó-Biró, D.J. Clements-Croome, N. Kochhar, H.B. Awbi and M.J. Williams, “Ventilation rates in schools and pupils’ performance,” Build.Environ., vol. 48, pp. 215–223, 2012. [Google Scholar]
  8. CEN, “European Standard EN 15251:2007 Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics,” Brussels, Belgium, 2007. [Google Scholar]
  9. M.J. Mendell and G.A. Heath, “Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature,” Indoor Air, vol. 15, pp. 27–52, 2005. [Google Scholar]
  10. L. Chatzidiakou, D. Mumovic and A.J. Summerfield, “What do we know about indoor air quality in school classrooms? A critical review of the literature,” Intelligent Buildings International, vol. 4, pp. 228–259, 2012. [CrossRef] [Google Scholar]
  11. O. Seppänen, N. Brelih, G. Goeders and A. Litiu, “Existing buildings, building codes, ventilation standards and ventilation in Europe,” Final HEALTHVENT WP5 Report, 2012. [Google Scholar]
  12. P. Carrer, E. de Oliveira Fernandes, H. Santos, O. Hänninen, S. Kephalopoulos and P. Wargocki, “On the development of health-based ventilation guidelines: principles and framework,” International Journal of Environmental Research and Public Health, vol. 15, pp. 1360, 2018. [Google Scholar]
  13. N. Artmann, H. Manz and P. Heiselberg, “Climatic potential for passive cooling of buildings by night-time ventilation in Europe,” Appl.Energy, vol. 84, pp. 187–201, 2007. [Google Scholar]
  14. P.M. Lynch and G.R. Hunt, “The night purging of a two-storey atrium building,” Build.Environ., vol. 46, pp. 144–155, 2011. [Google Scholar]
  15. E. Solgi, Z. Hamedani, R. Fernando, H. Skates and N.E. Orji, “A literature review of night ventilation strategies in buildings,” Energy Build., vol. 173, pp. 337–352, 2018. [Google Scholar]
  16. J. Le Dreau, P. Heiselberg and R.L. Jensen, “Experimental investigation of convective heat transfer during night cooling with different ventilation systems and surface emissivities,” Energy Build., vol. 61, pp. 308–317, 2013. [Google Scholar]
  17. R. Guo, P. Heiselberg, Y. Hu, H. Johra, C. Zhang, R.L. Jensen, K.T. Jønsson and P. Peng, “Experimental investigation of heat transfer for night cooling with diffuse ceiling ventilation,” Build.Environ., pp. 107665, 2021. [Google Scholar]
  18. M. Santamouris and D. Kolokotsa, “Passive cooling dissipation techniques for buildings and other structures: The state of the art,” Energy Build., vol. 57, pp. 74–94, 2013. [Google Scholar]
  19. D.A. Coley and A. Beisteiner, “Carbon dioxide levels and ventilation rates in schools,” International Journal of Ventilation, vol. 1, pp. 45–52, 2002. [Google Scholar]
  20. M. Griffiths and M. Eftekhari, “Control of CO2 in a naturally ventilated classroom,” Energy Build., vol. 40, pp. 556–560, 2008. [Google Scholar]
  21. S.M. Almeida, N. Canha, A. Silva, M. do Carmo Freitas, P. Pegas, C. Alves, M. Evtyugina and C.A. Pio, “Children exposure to atmospheric particles in indoor of Lisbon primary schools,” Atmos.Environ., vol. 45, pp. 7594–7599, 2011. [CrossRef] [Google Scholar]
  22. C.Y.H. Chao and J.S. Hu, “Development of a dual-mode demand control ventilation strategy for indoor air quality control and energy saving,” Build.Environ., vol. 39, pp. 385–397, 2004. [CrossRef] [Google Scholar]
  23. J.F. Montgomery, S. Storey and K. Bartlett, “Comparison of the indoor air quality in an office operating with natural or mechanical ventilation using short-term intensive pollutant monitoring,” Indoor and Built Environment, vol. 24, pp. 777–787, 2015. [CrossRef] [Google Scholar]
  24. G.R. Hunt and N.B. Kaye, “Pollutant flushing with natural displacement ventilation,” Build.Environ., vol. 41, pp. 1190–1197, 2006. [CrossRef] [Google Scholar]
  25. J. Sundell, “On the history of indoor air quality and health,” Indoor Air, vol. 14, pp. 51–58, 2004. [Google Scholar]
  26. S. Herberger, M. Herold, H. Ulmer, A. Burdack-Freitag, and F. Mayer, “Detection of human effluents by a MOS gas sensor in correlation to VOC quantification by GCMS,” Building and Environment, 45(11), 2430–2439, 2010. [Google Scholar]
  27. M. Leidinger, T. Sauerwald, T. Conrad, W. Reimringer, G. Ventura, and A. Schütze, “Selective detection of hazardous indoor VOCs using metal oxide gas sensors,” Procedia Engineering, 87, 1449–1452, 2014. [Google Scholar]
  28. A. Schütze, T. Baur, M. Leidinger, W. Reimringer, R. Jung, T. Conrad, and T. Sauerwald, “Highly sensitive and selective VOC sensor systems based on semiconductor gas sensors how to,” Environments, 4(1), 20, 2017. [Google Scholar]
  29. C. Vornanen-Winqvist, H. Salonen, K. Järvi, M. A. Andersson, R. Mikkola, T. Marik, ... and J. Kurnitski, “Effects of ventilation improvement on measured and perceived indoor air quality in a school building with a hybrid ventilation system,” International journal of environmental research and public health, 15(7), 1414, 2018. [Google Scholar]
  30. O. Toyinbo, R. Shaughnessy, M. Turunen, T. Putus, J. Metsämuuronen, J. Kurnitski, and U. Haverinen-Shaughnessy, “Building characteristics, indoor environmental quality, and mathematics achievement in Finnish elementary schools,” Building and Environment, vol. 104, pp. 114–121, 2016. [Google Scholar]
  31. P. Carrer, P. Wargocki, A. Fanetti, W. Bischof, E.D.O. Fernandes, T. Hartmann, S. Kephalopoulos, S. Palkonen and O. Seppänen, “What does the scientific literature tell us about the ventilation–health relationship in public and residential buildings?” Build.Environ., vol. 94, pp. 273–286, 2015. [CrossRef] [Google Scholar]
  32. O. Seppänen, “Ventilation strategies for good indoor air quality and energy efficiency,” International Journal of Ventilation, vol. 6, no. 4, pp. 297–306, 2008. [Google Scholar]
  33. G. Cao, H. Awbi, R. Yao, Y. Fan, K. Sirén, R. Kosonen and J.J. Zhang, “A review of the performance of different ventilation and airflow distribution systems in buildings,” Build.Environ., vol. 73, pp. 171–186, 2014. [CrossRef] [Google Scholar]
  34. A. K. Melikov, “Advanced air distribution: improving health and comfort while reducing energy use,” Indoor air, vol. 26, no. 1, pp. 112–124, 2016. [CrossRef] [PubMed] [Google Scholar]
  35. P. Wargocki and D.P. Wyon, “Providing better thermal and air quality conditions in school classrooms would be cost-effective,” Build.Environ., vol. 59, pp. 581–589, 2013. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.