Open Access
E3S Web Conf.
Volume 289, 2021
International Conference of Young Scientists “Energy Systems Research 2021”
Article Number 06004
Number of page(s) 6
Section Thermodynamics and Fuel Conversion
Published online 13 July 2021
  1. Official website of TURBODEN S.p.A. // ORC system. URL: (access date: 10.03.2021). [Google Scholar]
  2. B.V. Dzyubenko, Yu.A. Kuzma-Kichta, A.I. Leontiev, I.I. Fedik, L.P. Kholpanov. Intensification of heat and mass transfer on macro-, microand nano-scale. - Moscow: FSUE “CRDIATOMINFORM” (2008), with a color tab. [Google Scholar]
  3. S.Y. Misyura. Heat Transfer and Convection of Evaporating Sessile Droplets in Transition from Superhydrophilic to Superhydrophobic Structured Wall: Optimization of Functional Properties // International Communications in Heat and Mass Transfer, Vol. 112, (2020). p. 104474. [CrossRef] [Google Scholar]
  4. X. Quan, S. Chen, J. Li, P. Cheng. Enhanced dropwise condensation by oil infused nano-grass coatings on outer surface of a horizontal copper tube // International Communications in Heat and Mass Transfer, Vol. 91, (2018). pp. 11-16. [CrossRef] [Google Scholar]
  5. R. Lara Jorge, Mark T. Holtzapple. Experimental investigation of dropwise condensation on hydrophobic heat exchangers part I: Dimpled-sheets; Desalination 278, (2011), pp. 165-172. [CrossRef] [Google Scholar]
  6. A.V. Ryzhenkov, M.R. Dasaev, S.V. Grigoriev, A.V. Kurshakov, O.V. Ryzhenkov, M.V. Lukin. The effect of hydrophobicity on hydraulic resistance during transportation of fluid media // International Journal of Emerging Trends in Engineering Research, Vol. 8, (2020), pp. 195-202. [Google Scholar]
  7. A.V. Ryzhenkov, M.R. Dasaev, S.V. Grigoriev, A.V. Kurshakov, O.V. Ryzhenkov, M.V. Lukin. Hydrophobic brass surfaces created by means of multi-scale relief // International Journal of Mechanical Engineering and Technology, Vol. 9, (2018). pp. 58–70. [Google Scholar]
  8. H. Yan, M.R.B.A. Rashid, S.Y. Khew, F. Li, M. Hong. Wettability transition of laser textured brass surfaces inside different mediums // Applied Surface Science, Vol. 427, (2018). pp. 369-375. [CrossRef] [Google Scholar]
  9. A. Samanta, Q. Wang, S.K. Shaw, H. Ding. Roles of chemistry modification for laser textured metal alloys to achieve extreme surface wetting behaviors // Materials & Design, Vol. 192, (2020). p. 108744. [CrossRef] [Google Scholar]
  10. L. Jiao, Z. Chua, S. Moon, J. Song, G. Bi, H. Zheng. Femtosecond Laser Produced Hydrophobic Hierarchical Structures on Additive Manufacturing Parts // Nanomaterials, Vol. 8, (Aug 2018). p. 601. [CrossRef] [Google Scholar]
  11. O. Raimbault, S. Benayoun, K. Anselme, C. Mauclair, T. Bourgade, A.M. Kietzig, P.L. GirardLauriault, S. Valette, C. Donnet. The Effects of Femtosecond Laser-textured Ti-6Al-4V on Wettability and Cell Response // Materials Science and Engineering: C, Vol. 69, (2016). pp. 311–320. [CrossRef] [Google Scholar]
  12. A. Peter, A.H.A. Lutey, S. Faas, L. Romoli, V. Onuseit, T. Graf. Direct Laser Interference Patterning of Stainless Steel by Ultrashort Pulses for Antibacterial Surfaces // Optics & Laser Technology, Vol. 123, (2020). p. 105954. [CrossRef] [Google Scholar]
  13. G.B. Shirsath, K. Muralidhar, R.G.S. Pala, J. Ramkumar. Condensation of Water Vapor Underneath an Inclined Hydrophobic Textured Surface Machined by Laser and Electric Discharge // Applied Surface Science, Vol. 484, (2019). pp. 999–1009. [CrossRef] [Google Scholar]
  14. L.B Boinovich, A.M. Emelyanenko, K.A. Emelyanenko, A.G. Domantovsky, A.A. Shiryaev. Comment on “Nanosecond laser textured superhydrophobic metallic surfaces and their chemical sensing applications” by D. V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J.E. Stringer, P.J. Smith, C. Connaughton, J. D. Shephard (Appl. Surf. Sci. 357 (2015) 248–254) // Applied Surface Science, Vol. 379, (2016). pp. 111–113. [Google Scholar]
  15. V. Vercillo, J.T. Cardoso, D. Huerta-Murillo, S. Tonnicchia, A. Laroche, J.A.M. Guillén, J.L. Ocaña, A.F. Lasagni, E. Bonaccurso. Durability of Superhydrophobic Laser-treated Metal Surfaces under Icing Conditions // Materials Letters: X, Vol. 3, (2019). p. 100021. [CrossRef] [Google Scholar]
  16. Patent 2 439 204 C1, Russian Federation, IPC C23F 11/14. Method of protection of hydraulic systems surfaces against corrosion and deposit accumulation: № 2010124248/02: applied for. 16.06.2010: publ. 10.01.2012 / V.A. Ryzhenkov, A.V. Kurshakov, I.P. Anakhov, O.V. Kalakutskaya 4 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.