Open Access
Issue
E3S Web Conf.
Volume 290, 2021
2021 3rd International Conference on Geoscience and Environmental Chemistry (ICGEC 2021)
Article Number 03003
Number of page(s) 5
Section Environmental Energy Protection and Energy-Saving Sustainability
DOI https://doi.org/10.1051/e3sconf/202129003003
Published online 14 July 2021
  1. X.B. Feng, J.B. Chen, X.W. Fu, H.Y. Hu, P. Li, G.L. Qiu, H.Y. Yan, R.S. Yin, H. Zhang, W. Zhu, Progresses on environmental geochemistry of mercury. Bull. Mineral., Petrol. Geochem. 32, 503 (2013) (in Chinese) [Google Scholar]
  2. T.K. Tsui, J.D. Blum, S.Y. Kwon, Review of stable mercury isotopes in ecology and biogeochemistry. Sci. Total. Environ. 716, 135386.1 (2020) [Google Scholar]
  3. J.T. Dvonch, J.R. Graney, G.J. Keeler, R.K. Stevens, Use of elemental tracers to source apportion Hg in South Florida precipitation. EnViron. Sci. Technol. 33, 4522 (2014) [Google Scholar]
  4. Z. Cheng, C. Gang, T. Yang, G. Lu, C. Mak, D. Kelly, Z. Xu, An investigation on mercury association in an Alberta subbituminous coal. Energ. Fuel. 21, 485 (2007) [Google Scholar]
  5. Q.R. Wu, G.L. Li, S.X. Wang, K.Y. Liu, J.M. Hao, Mitigation options of atmospheric Hg emissions in China. EnViron. Sci. Technol. 52, 12368 (2018) [Google Scholar]
  6. W.J. Huang, Z. Qu, W.M. Chen, H.M. Xu, N.Q. Yan, An enhancement method for the elemental mercury removal from coal-fired flue gas based on novel discharge activation reactor. Fuel. 171, 59 (2016) [Google Scholar]
  7. G. Wang, F. Cao, B. Shan, M. Meng, W. Wang, R.Y. Sun, Sources and assessment of mercury and other heavy metal contamination in soils surrounding the Wuda underground coal fire area, Inner Mongolia, China. Bull. Environ. Contam. Toxicol. 103, 828 (2019) [Google Scholar]
  8. J. Chen, G.J. Liu, Y. Kang, B. Wu, R.Y. Sun, C.C. Zhou, D. Wu, Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China. Chemosphere. 90, 1925 (2013) [Google Scholar]
  9. Q.R. Wu, S.X. Wang, G.L. Li, S. Liang, C.J. Lin, Y.F. Wang, S.Y. Cai, K.Y. Liu, J.M. Hao, Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014. Environ. Sci. Technol. 50, 13428 (2016) [Google Scholar]
  10. P.A. Ariya, M. Amyot, A. Dastoor, D. Deeds, A. Feinberg, G. Kos, A. Poulain, A. Ryjkov, K. Semeniuk, M. Subir, Mercury physicochemical and biogeochemical transformation in the atmosphere and at atmospheric interfaces: A review and future directions. Chem. Rev. 115, 3760 (2015) [Google Scholar]
  11. S.F. Dai, D.Y. Ren, C.L. Chou, R.B. Finkelman, V.V. Seredin, Y.P. Zhou, Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 94, 3 (2012) [Google Scholar]
  12. L.G. Zheng, G.J. Liu, C.C. Qi, Y. Z, M.H. Wong, The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei coal, Anhui province, China. Int. J. Coal Geol. 73, 139 (2008) [Google Scholar]
  13. S.F. Dai, R.S. Zeng, Y.Z. Sun, Enrichment of arsenic, antimony, mercury, and thallium in a Late Permian anthracite from Xingren, Guizhou, Southwest China. Int. J. Coal Geol. 66, 217 (2006) [Google Scholar]
  14. J. Wu, J.H. Zhang, S. Zheng, Y.Y. Zhang, W.G. Pan, J.X. Ren, S. Chen, K. Ding, T. Zhang, Experimental study on the relationship between mercury enrichment coal and the depth of coalseam. Adv. Mater. Res. 268, 351 (2011) [Google Scholar]
  15. X.Y. Huang, L.G. Zheng, Q.W. Zhang, H. Chu, H. Chu, X.X. Yan, Y.Y. Han, Distribution and modes of occurrence of mercury in coal seams Altered by magmatic hydrothermal from Wolonghu coal mine. Geol. J. China Univ. 21, 280 (2015) (in Chinese) [Google Scholar]
  16. D.Y. Song, C.H. Song, B.Y. Song, C.B. Yang, Y.B. Li, Geochemistry of mercury in the Permian tectonically deformed coals from Peigou mine, Xinmi coalfield, China. Acta Geol. Sin.-Engl. Ed. 91, 2243 (2017) [Google Scholar]
  17. L.B. Gao, Y.B. Wang, Q.W. Huang, S.Q. Guo, Modes of occurrence and thermal stability of mercury in different samples from Guandi coal preparation plant. Fuel. 200, 22 (2017) [Google Scholar]
  18. X.D. Wang, D. Wu, G.J. Liu, R.Y. Sun, Variation of Hg content in low sulfur coals in relation to the coal-forming environment: A case study from Zhuji coal mine, Huainan coalfield, North China. Environ. Earth Sci. 77, 703 (2018) [Google Scholar]
  19. Q.Y. Cao, L. Yang, W.Y. Ren, Y. L. Song, S.Y. Huang, Y.T. Wang, Z.Y. Wang, Spatial distribution of harmful trace elements in Chinese coalfields: An application of WebGIS technology. Sci. Total. Environ. 755, 142527 (2021) [Google Scholar]
  20. A.Y. Yang, Z.C. Yan, R.T. Hui, Z.Y. Shen, K. Zhuang, The Abundance, distribution, and modes of occurrence of Hg in Chinese coals. Sci. Tech. Engrg. 15, 93 (2015) (in Chinese) [Google Scholar]
  21. D.Y. Ren, F.H. Zhao, S.F. Dai, J.Y. Zhang, K.L. Luo, Trace element geochemistry of coal (Science press, Beijng, 2006) (in Chinese) [Google Scholar]
  22. J.Y. Zhao, X.Y. Tang, W.H. Huang, Abundance of trace elements in coal of China. Coal. Geol China. 14, 6 (2002) (in Chinese) [Google Scholar]
  23. Y.E. Yudovich, M.P. Ketris, Mercury in coal: A review. Part 1. Geochemistry. Int. J. Coal Geol. 62, 107 (2005) [Google Scholar]
  24. R.B. Finkelman, Trace and minor elements in coal. Org. Geochem. (1993) [Google Scholar]
  25. State Administration for Market Regulation. Classification for content of harmful elements in coal-Part 4: Mercury. (GB/T 20475.4-2012) (in Chinese) [Google Scholar]
  26. S.F. Dai, W.G. Zhang, C.R. Ward, V.V. Seredin, J.C. Hower, X. Li, W.J. Song, X.B. Wang, H. Kang, L.C. Zheng, P.P. Wang, D. Zhou, Mineralogical and geochemical anomalies of Late Permian coals from the Fusui coalfield, Guangxi province, Southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 105, 60 (2013) [Google Scholar]
  27. T. Ge, A Research into the distribution characteristics & Natural existing condition of the mercury in the coal of Huainan city. Adv. Mater. Res. 599, 448 (2012) [Google Scholar]
  28. S.L. Zhao, C. Sun, Y.Q. Zhang, T.T. Jiao, W.R. Zhang, P. Liang, H.W. Zhang, Determination of mercury occurrence and thermal stability in high ash bituminous coal based on sink-float and sequential chemical extraction method. Fuel. 253, 571 (2019) [Google Scholar]
  29. J.H. Pan, C.C. Zhou, L.F. Cong, N.N. Zhang, C. Liu, C.B. Peng, C.H. Ouyang, Mercury in Chinese coals: Modes of occurrence and its removal statistical laws during coal separation. Energ. Fuel. 31, 986 (2016) [Google Scholar]
  30. S.F. Dai, V.V. Seredin, C.R. Ward, J.C. Hower, Y.W. Xing, W.G. Zhang, W.J. Song, P.P. Wang, Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding coalfield, Guizhou, China. Miner. Depos. 50, 159 (2015) [Google Scholar]
  31. A. Kolker, C.L. Senior, J.C. Quick, Mercury in coal and the impact of coal quality on mercury emissions from combustion systems. Appl. Geochem. 21, 1821 (2006) [Google Scholar]
  32. T. Dziok, A. Strugała, A. Włodek, Studies on mercury occurrence in inorganic constituents of Polish coking coals. Environ. Sci. Pollut. Res. 26, 1 (2018) [Google Scholar]
  33. X.F. Bai, W.H. Li, W. Yue, D. Hua, The distribution and occurrence of mercury in Chinese coals. Int. J. Coal Sci.Tech. 4, 172 (2017) [Google Scholar]
  34. G.J. Liu, L.G. Zheng, Y. Zhang, C.C. Qi, Y.W. Chen, Z.C. Peng, Distribution and mode of occurrence of As, Hg and Se and Sulfur in coal seam 3 of the Shanxi formation, Yanzhou coalfield, China. Int. J. Coal Geol. 71, 371 (2007) [Google Scholar]
  35. I. Kostova, J.C. Hower, D. Apostolova, Q. Wei, Concentration, distribution, and mode of occurrence of mercury in Bulgarian high-sulphur coals. Earth. Env. Sci. 609, 12 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.