Open Access
E3S Web Conf.
Volume 302, 2021
2021 Research, Invention, and Innovation Congress (RI2C 2021)
Article Number 02015
Number of page(s) 7
Section Environmental Science and Engineering
Published online 10 September 2021
  1. Ministry of Energy Annual Report, Biomass production. [Google Scholar]
  2. YS. Cheng, P. Mutrakulcharoen, S. Chuetor, K. Cheenkachorn, P. Tantayotai, EJ. Panakkal, M. Sriariyanun, Recent situation and progress in biorefining process of lignocellulosic biomass: toward green economy, Applied Science and Engineering Progress, 13, 4(2020): 299–311. [Google Scholar]
  3. EJ. Panakkal, M Sriariyanun, J. Ratanapoompinyo, P. Yasurin, K. Cheenkachorn, W. Rodiahwati, P. Tantayotai, Influence of Sulfuric Acid Pretreatment and Inhibitor of Sugarcane Bagasse on the Production of Fermentable Sugar and Ethanol, Applied Science and Engineering Progress, 15, 1(2022) [Google Scholar]
  4. M. Sriariyanun, K. Kitsubthawee, Trends in Lignocellulosic Biorefinery for Production of Value-added Biochemicals, Applied Science and Engineering Progress. 13(4), (2020): 283–284. [Google Scholar]
  5. H. Chen, J. Liu, X. Chang, D. Chen, Y. Xue, P. Liu, H. Lin and S. Han, A review on the pretreatment of lignocellulose for high-value chemicals., Fuel Processing Technology. 160, (2017): 196–206. [Google Scholar]
  6. M. Sriariyanun, JH. Heitz, P. Yasurin, S. Asavasanti, P. Tantayotai, Itaconic acid: A promising and sustainable platform chemical, Applied Science and Engineering Progress. 12(2), (2019) : 75–82. [Google Scholar]
  7. P. Rachmontree, T. Douzou, K. Cheenkachorn, M. Sriariyanun, Furfural : A sustainable platform chemical and fuel, Applied Science and Engineering Progress. 13(1), (2020): : 3–10. [Google Scholar]
  8. MP. Gundupalli, YS. Cheng, S. Chuetor, D. Bhattacharyya, M. Sriariyanun. Effect of Dewaxing on saccharification and ethanol production from different lignocellulosic biomass. Bioresource Technology. 125596. [PubMed] [Google Scholar]
  9. R. Akkharasinphonrat, T. Douzou, M. Sriariyanun, Development of ionic liquid utilization in biorefinery process of lignocellulosic biomass, King Mongkut’s University of Technology North Bangkok International Journal of Applied Science and Technology, 10, 2 (2017): 89-96 [Google Scholar]
  10. W. Rodiahwati and M. Sriariyanun, Lignocellulosic Biomass to Biofuel Production: Integration of Chemical and Extrusion (Screw Press) Pretreatment, KMUTNB International Journal of Applied Science and Technology., 9(4), (2016): 289–298. [Google Scholar]
  11. S. Chuetor, T. Ruiz, A. Barakat, N. Laosiripojana, V. Champreda, M. Sriariyanun, Evaluation of rice straw biopowder from alkaline-mechanical pretreatment by hydro-textural approach, Bioresource Technology. 323, (2021) [Google Scholar]
  12. M. Sriariyanun, Q. Yan, I. Nowik, K. Cheenkachorn, T. Phusantisampan, M. Modigell, Efficient pretreatment of rice straw by combination of screw press and ionic liquid to enhance enzymatic hydrolysis, Kasetsart Journal (Natural Science), 49, (2015): 146–154. [Google Scholar]
  13. K. Cheenkachorn, T. Douzou, S. Roddecha, P. Tantayotai, and M. Sriariyanun, Enzymatic saccharification of rice straw under influence of recycled ionic liquid pretreatments, Energy Procedia. 100, (2016): 160–165. [Google Scholar]
  14. K. Rattanaporn, S. Roddecha, M. Sriariyanun, K. Cheenkachorn, Improving saccharification of oil palm shell by acetic acid pretreatment for biofuel production, Energy Procedia, 141C, (2017): 146-149. [Google Scholar]
  15. K. Rattanaporn, P. Tantayotai, T. Phusantisampan, P. Pornwongthong, M. Sriariyanun, Organic acid pretreatment of oil palm trunk: effect on enzymatic saccharification and ethanol production, Bioprocess and Biosystem Engineering, 41, (2018): 467–477. [Google Scholar]
  16. MP. Gundupalli, A. Sahithi, YS. Cheng, P. Tantayotai, M. Sriariyanun. 2021. Differential effects of inorganic salts on cellulase kinetics in enzymatic saccharification of cellulose and lignocellulosic biomass. Bioprocess and Biosystems Engineering. Published online. (2021). [Google Scholar]
  17. A. Boontum, J. Phetsom, W. Rodiahwati, K. Kitsubthawee and T. Kuntothom, Characterization of Diluted-acid Pretreatment of Water Hyacinth, Applied Science and Engineering Progress. 12(4), (2019): 253–263. [Google Scholar]
  18. YS. Cheng, ZY. Wu, M. Sriariyanun, Evaluation of Macaranga tanarius as a biomass feedstock for fermentable sugars production, Bioresource Technology. 294, (2019). [Google Scholar]
  19. P. Tantayotai, K. Rattanaporn, S. Tepaamorndech, K. Cheenkachorn, M. Sriariyanun “Analysis of an ionic liquid and salt tolerant microbial consortium which is useful for enhancement of enzymatic hydrolysis and biogas production, Waste and Biomass Valorization, 10(6), (2019): 1481–1491. [Google Scholar]
  20. P. Tantayotai, P. Pornwongthong, C. Muenmuang, T. Phusantisampan and M. Sriariyanun, Effect of cellulase-producing microbial consortium on biogas production from lignocellulosic biomass, Energy Procedia. 141C, (2017): 180–183. [Google Scholar]
  21. M. Sriariyanun, P. Tantayotai, P. Yasurin, P. Pornwongthong, and K. Cheenkachorn, Production, purification and characterization of an ionic liquid tolerant cellulase from Bacillus sp. isolated from rice paddy field soil, Electronic Journal of Biotechnology. 19, (2016): 23–28. [Google Scholar]
  22. P. Tantayotai, P. Rachmontree, W. Rodiahwati, K. Rattanaporn, M. Sriariyanun, Production of ionic liquid-tolerant cellulase produced by microbial consortium and its application in biofuel production, Energy Procedia. 100, (2016): 155–159. [Google Scholar]
  23. P. Chandranupap, P. Chandranupap, Effect of Hemicellulase Enzyme in Flotation Deinking of Laser-printed Paper, Applied Science and Engineering Progress. 14(3), (2021): 370–377. [Google Scholar]
  24. R. Runajak, S. Chuetor, W. Rodiahwati, M. Sriariyanun, P. Tantayotai, and S. Phornphisutthimas, “Analysis of Microbial Consortia with High Cellulolytic Activities for Cassava Pulp Degradation, E3S Web of Conferences. 141, (2020) [Google Scholar]
  25. Y. Zheng, J. Zhao, F. Xu and Y. Li, Pretreatment of lignocellulosic biomass for enhanced biogas production, Progress in Energy and Combustion Science 42, (2014):35-53 [Google Scholar]
  26. W. Siri-anusornsak, N. Sinbuathong, Chemical pretreatment of rice straw for a raw material in the production of renewable energy, Proceedings of 51st Kasetsart University Annual Conference: Science, Natural Resources and Environment, (2014). [Google Scholar]
  27. R. Pawongrat, Pretreatment processes for enhancing the efficiency of ethanol production from lignocellulosic agricultural wastes, Veridian EJournal Science and Technology Silpakorn University, (2015). [Google Scholar]
  28. C. Martin, B. Alriksson, A. Sjode, N. Nilverbrant and L.J. Jonsson, Dilute Sulfuric Acid Pretreatment of Agricultural and Agro-Industrial Residues for Ethanol Production, Applied Biochemistry and Biotechnology, (2011). [Google Scholar]
  29. T. Li, Production of bioethanol from unwashedpretreated rapeseed straw at high solid loading, Chengdu Institute of Biology. Bioresource [Google Scholar]
  30. G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Analytical Chemistry 31, (1959): 426–428. [Google Scholar]
  31. S. Akkaravathasinp, P. Narataruksa, C. Prapainainar, Optimization of Semi-batch Reactive Distillation Using Response Surface Method: Case Study of Esterification of Acetic acid with Methanol in a Process Simution, Applied Science and Engineering Progress. 12(3), (2019): 209–215. [Google Scholar]
  32. M. Bahadi, N. Salih, J. Salimon, D-Optimal Design Optimization for the Separation of Oleic Acid from Malaysian High Free Fatty Acid Crude Palm Oil Fatty Acids Mixture Using Urea Complex Fractionation, Applied Science and Engineering Progress. 14(2), (2021): 175–186. [Google Scholar]
  33. L.K. Akula, R.K. Orauganti, D. Bhattacharyya, Treatment of Marigold Flower Processing Wastewater Using a Sequential BiologicalElectrochemical Process, Applied Science and Engineering Progress. 14(3), (2021). [Google Scholar]
  34. P. Pangsri, T. Wuttipornpun, W. Songserm, Mannanase and Cellulase Enzyme Production from the Agricultural Wastes by the Bacillus subtilis P2-5 Strain, Applied Science and Engineering Progress. 14(3), (2021). [Google Scholar]
  35. L. Kim and J. Han, Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology, Department of Civil and Environmental Engineering. KAIST, 373-1, (2012). [Google Scholar]
  36. P. Amnuaycheewa, W. Rodiahwati, P. Sanvarinda, K. Cheenkachorn, A. Tawai and M. Sriariyanun, Effect of Organic Acid Pretreatment on Napier Grass (Pennisetum purpureum) Straw Biomass Conversion, KMUTNB International Journal of Applied Science and Technology. 10(2), (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.