Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 01005
Number of page(s) 9
Section Fluid
DOI https://doi.org/10.1051/e3sconf/202132101005
Published online 11 November 2021
  1. K.B. Ajoku, Modern use of solid biomass in Africa: prospect for utilization of agro-waste resources in Nigeria. In: Rainer Janssen, Dominik Rutz (Eds.), Bioenergy for Sustainable Development in Africa. Springer, Netherland, ISBN 978-94-007-2180-7, pp. 131–146, 2012. [Google Scholar]
  2. X. Zhang, M. Xu, R. Sun, L. Sun, Study on biomass pyrolysis kinetics. Journal of Engineering for Gas Turbines and Power 128, 493–496, 2006. [Google Scholar]
  3. S. Munir, S.S. Daood, W. Nimmo, A.M. Cunliffe, B.M. Gibbs, Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres, Bioresource Technology 100 (2009) 1413–1418, 2009. [Google Scholar]
  4. A.A. Zabaniotou, E.K. Kantarelis, D.C. Theodoropoulos, Sunflower shell utilization for energetic purposes in an integrated approach of energy crops: laboratory study pyrolysis and kinetics. Bioresource Technology 99, 3174–3181, 2008. [Google Scholar]
  5. M.G. Gronli, G. Varhegyi, C.D. Blasi, Thermogravimetric analysis and devolatilization kinetics of wood. Industrial and Engineering Chemical Research 41, 4201–4208, 2002. [Google Scholar]
  6. O. Senneca, Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Processing Technology 88, 87–97, 2007. [Google Scholar]
  7. I. Simkovic, K. Csomorova, Thermogravimetric analysis of agricultural residues: oxygen effect and environmental impact. Journal of Applied Polymer Science 100, 1318–1322, 2006. [Google Scholar]
  8. M. Varol, A.T. Atimtay, B. Bay, H. Olgun, Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochimica Acta, 510 (1–2) 195-201, 2010. [Google Scholar]
  9. J.J. Chew, V. Doshi, Recent advances in biomass pretreatment—Torrefaction fundamentals and technology. Renewable and Sustainable Energy Reviews, 15, 4212–22, 2011. [Google Scholar]
  10. A. Arenillas, F. Rubiera, B. Arias, J.J. Pis, J.M. Faúndez, A.L. Gordon, X.A. García, A TG/DTA study on the effect of coal blending on ignition behaviour. J. Therm. Anal. Calorim. 76, 603–614, 2004. [Google Scholar]
  11. F. Rubiera, A. Arenillas, B. Arias, J.J. Pis, Modification of combustion behaviour and NO emissions by coal blending Fuel Process. Technol. 77-78, 111-117, 2002. [Google Scholar]
  12. H. Haykırı-Açma, Combustion characteristics of different biomass materials. Energ. Convers. Manage. 44, 155-162, 2003. [Google Scholar]
  13. G. Skodras, P. Grammelis, P. Basinas, Pyrolysis and combustion behaviour of coal–MBM blends. Bioresour. Technol. 98, 1–8, 2007. [Google Scholar]
  14. C. Wang, F. Wang, Q. Yang, R. Liang, Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenerg. 33, 50-56, 2009. [Google Scholar]
  15. L. Zhou, Y. Wang, Q. Huang, J. Cai,. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process. Technol. 87, 963–969, 2006. [Google Scholar]
  16. R. Upadhyay, S. K. Rai and G. Dutta, Numerical analysis of density wave instability and heat transfer deterioration in a supercritical water reactor, Journal of Mechanical Science and Technology, 32 (3), 1063-1070, 2018. [Google Scholar]
  17. S.K. Rai, G. Dutta and T. Sheorey, “Stability Analysis of Supercritical Water Natural Circulation Loop with Vertical Heater and Cooler”, Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), December 27-30, 2017, BITS Pilani, Hyderabad, India, 2017. [Google Scholar]
  18. S.K. Rai, P. Kumar, and V. Panwar, Numerical analysis of influence of geometry and operating parameters on Ledinegg and dynamic instability on supercritical water natural circulation loop, Nuclear Engineering and Design, 369,110830, 2020. [Google Scholar]
  19. S. Swapan, P. Deepak Singh, G. Shalini, Surface morphology properties of biochars obtained from different biomass waste, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39:10, 1007-1012, 2017. [Google Scholar]
  20. S. K Rai, P. Kumar, V. Panwar, Mathematical and numerical investigation of Ledinegg flow excursion and dynamic instability of natural circulation loop at supercritical condition, Annals of Nuclear Energy, 155, 108129, 2021. [Google Scholar]
  21. S.K. Rai, P. Kumar and V. Panwar, Numerical investigation of steady state characteristics and stability of supercritical water natural circulation loop of a heater and cooler arrangements, Nuclear Engineering and Technology, 53, 3597-3611, 2021. [Google Scholar]
  22. P.T. Williams, S. Besler, The influence of temperature and heating rate on the slow pyrolysis of biomass, Renewable Energy 1481, 6–7, 1996. [Google Scholar]
  23. MJJ Antal, M, Grønli, The Art, Science, and Technology of Charcoal Production, Industrial & Engineering Chemistry Research, 42, 1619–1640, 2003. [Google Scholar]
  24. A. Downie, A. Crosky, Munroe, P. Physical properties of biochar. In: Biochar for Environmental Management: Science and Technology. 1st edn (eds Lehmann J, Joseph S), Earthscan, London, 13–29, 2009. [Google Scholar]
  25. D. Angin, Effect of Pyrolysis Temperature and Heating Rate on Biochar Obtained from Pyrolysis of Safflower Seed Press Cake. Bioresource Technology, 128, 593–597, 2013. [Google Scholar]
  26. S. Yaman, Pyrolysis of biomass to produce fuels and chemical feedstock. Energy Conversion and Management, 45 (5), 651-671, 2004. [Google Scholar]
  27. A. Demirbas, Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Ana. and App. Pyro., 72, 243–248, 2004a. [Google Scholar]
  28. A. Demirbas, Combustion Characteristics of different biomass fuels. Prog. in En. and Comb. Sci., 30, 219–230, 2004b. [Google Scholar]
  29. HLE. Mena, AAB. Pecora, AL. Beraldo, Slow Pyrolysis of Bamboo biomass: Analysis of Biochar properties. Chemical Engineering Transactions, 37, 115-120, 2014. [Google Scholar]
  30. Z, Movasaghi S, Rehman I. ur Rehman, Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 43, 134-179, 2008. [Google Scholar]
  31. S. Swapan, G. Shalini, Pyrolysis of coconut husk biomass: Analysis of its biochar properties, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39: 8,761-767, 2017. [Google Scholar]
  32. A. Demirbas, Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit., 20, 105–11, 2002a. [Google Scholar]
  33. A. Demirbas, Fuel characteristics of olive husk and walnut, hazelnut, sunflower and almond shells. Energy Sources, 24, 213–9, 2002b. [Google Scholar]
  34. J.O. Titiloye, M.S. Abu Bakar, T.E. Odetoye, Thermochemical cahracteristic of agricultural wastes from West Africa. Industrial Crops and Products, 47, 199–203, 2013. [Google Scholar]
  35. L, Cuiping, CW, Yanyongjie, H. Haitao Chemical elemental characteristics of biomass fuels in China. Biomass Bioenerg., 27, 119–30, 2004. [Google Scholar]
  36. LL, Baxter, TR, Miles Jr Miles TR, Jenkins BM, Milne T, Dayton D. The behaviour of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol., 54, 47–78, 1998. [Google Scholar]
  37. Y, Qian Zuo C, Tan J, J. He, Structural analysis of bio-oils from sub and supercritical water liquefaction of woody biomass. Energy, 32, 196-202, 2007. [Google Scholar]
  38. A.O. Ayeni F.K. Hymore, S.N. Mudliar, S.C. Deshmukh D.B. Satpute, J.A. Omoleye R.A. Pandey Hydrogen peroxide and lime based oxidative pretreatment of wood waste to enhance enzymatic hydrolysis for a biorefinery: Process parameters optimization using response surface methodology. Fuel 106, 187–194, 2013. [Google Scholar]
  39. B.M. Jenkins, Baxter, L.L., Miles, T.R., Miles, Jr.T.R. Combustion properties of biomass. Fuel Processing Technology, 54:17-46, 1998. [Google Scholar]
  40. A. Demirbas, Relationships between lignin contents and fixed carbons of biomass samples. Energy Conversion and Management, 44:1481-1486, 2003. [Google Scholar]
  41. P.K. Kanaujia, Sharma, Y.K., Garg, M.O., Tripathi, D., Singh, R. Review of analytical strategies in the production and upgrading of bio-oils derived from lingo-cellulosic biomass. Journal of Analytical and Applied Pyrolysis, 105:55-74, 2014. [Google Scholar]
  42. K. Jindo, H. Mizumoto, Sawada, Y., Sanchez-Monedero, M.A., Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11:6613-6621, 2014. [Google Scholar]
  43. J. Heikkinen, J.C. Hordijk, de Jong, W., Spliethoff, H. Thermogravimetry as a tool to classify waste components to be used for energy generation. Journal of Analytical and Applied Pyrolysis, 71:883-900, 2004. [Google Scholar]
  44. H.H. Acma, Mericboyu A.E., S. Kucukbayrak, Effect of mineral matter on the reactivity of lignite chars. Energy Conversion and Management, 42:11-20, 2001. [Google Scholar]
  45. R.G. Fernandez, Garcia, C.P., Lavin, A.G., delas Heras, J.L.B. Study of main combustion characteristics for biomass fuels used in boilers. Fuel Processing Technology, 103:16-26, 2012. [Google Scholar]
  46. S. Darmawan, Wistara, N. J., Pari, G., Maddu, A., and Syafii, W. “Characterization of lignocellulosic biomass as raw material for the production of porous carbon-based materials,” BioRes. 11(2),3561-3574, 2016. [Google Scholar]
  47. S.V. Vassilev, Baxter, D., Andersen, L.K., Vassileva, C.G. An overview of the chemical composition of biomass. Fuel, 89:913–933, 2010. [Google Scholar]
  48. M.A. Sukiran, Kheang, L.S., Bakar, N.A., May, C.Y. Production and characterization of bio-char from the pyrolysis of empty fruit bunches. Am. J. Appl. Sci., 8: 984–988, 2011. [Google Scholar]
  49. M. Keiluweit, Nico, P.S., Johnson, M.G., Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environmental Science & Technology, 44, 1247–1253, 2010. [Google Scholar]
  50. Y.Y. Bi, Guan, J.P., Wang, D.L. Comprehensive Utilization Technology of Straw Resources in China (in Chinese). Beijing: China Agricultural Science and Technology Press, 2008. [Google Scholar]
  51. F. Ronsse, van Hecke, S., Dickinson, D., Prins, W. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions, Global Change Biology Bioenergy, 5:104-115, 2013. [Google Scholar]
  52. R. Zornoza, Moreno-Barriga, F., Acosta, J.A., Muñoz, M.A., Faz, A. 2016. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 144, 122–130. [Google Scholar]
  53. T. Chen, Zhang, Y., Wang, H., Lu, W., Zhou, Z. Zhang, Y., Ren, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresour. Technol. 164, 47–54, 2014. [Google Scholar]
  54. L. Gasparovic, Korenova, Z., Jelemensky, L. Kinetic study of wood chips decomposition by TGA. Chemical Papers, 64(2):174–181, 2010. DOI: 10.2478/s11696-009-0109-4. [Google Scholar]
  55. H. Liang, Chen, L., Liu, G., H. Zheng, Surface morphology properties of biochars produced from different feedstocks. International Conference on Civil, Transportation and Environment, Published by Atlantis Press, 2016. [Google Scholar]
  56. E. Biagini, Narducci, P., Tognoti, L. Size and structural characterization of lignin-cellulosic fuels after the rapid Devolatilization. Fuel, 87: 177–186, 2008. [Google Scholar]
  57. S. Brodowski, Amelung, W., Haumaier, L., Abetz, C., Zech, W. 2005. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Geoderma, 128:116–129. [Google Scholar]
  58. Y. Yao, B. Gao, M. Inyang, AR. Zimmerman, X. Cao, P. Pullammanappallil, et al., Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresour Technol 102:6273–8, 2011. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.