Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 05080
Number of page(s) 9
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202340105080
Published online 11 July 2023
  1. Verkholin V.A. Features of calculation and selection of parameters of seismic isolation of bridges. Earthquake construction. Building safety. Vol. 2. pp. 44-48 (2004). [Google Scholar]
  2. Uzdin A. M., Sandovich T. A., Samih Amin Al-Nasser-Mohomad. Fundamentals of the theory of seismic resistance and seismic construction of buildings and structures. St. Petersburg: VNIIG Publishing House, p. 175, (1993). [Google Scholar]
  3. Shestoperov G. S. Overview information. Antiseismic devices in bridge building. M.: VPTITRANSSTROY. p. 46 (1986). [Google Scholar]
  4. Skiner R. I., Robinson W. H., McVerry G. H. An introduction to seismic isolation. New Zealand. John Wiley & Sons. p. 353. (1993). [Google Scholar]
  5. A.M. Uzdin, I.O. Kuznetsova. Seismic resistance of bridges. Book. Palmarium Academic Publishing. p. 456 (2014). [Google Scholar]
  6. Qiang Han, Jianian Wen, Xiuli Du. Nonlinear response of continuous girder bridges with isolation bearings under bi-directional ground motions. Journal of Vibroengineering, Beijing University of Technology, Beijing, China. Vol. 17(2), pp. 816-826. (2015). [Google Scholar]
  7. Wang S., Heisha L. H. W., Yu F., and Wang G. X. Seismic response analyses of isolated bridges with different isolation bearings. In Advanced Materials Research, Vol. 446, pp. 1132-1137. (2012). [CrossRef] [Google Scholar]
  8. Aghaeidoost V., and Billah A. M. Effect of lead rubber bearing (LRB) modeling technique on the seismic response of base-isolated bridges. pp. 3930-3941. (2021). [Google Scholar]
  9. Soleimanloo H. S., and Barkhordari M. A. Mechanical characteristics and application of fiber-reinforced elastomeric bearings for seismic isolation and retrofitting of bridges. Trends in Applied Sciences Research, Vol. 9(1), p.31. (2014). [CrossRef] [Google Scholar]
  10. E. Choi, T. Nam, B. Cho. A new concept of isolation bearings for highway steel bridges using shape memory alloys. Canadian Journal of Civil Engineering. Vol. 32(5). (2005). [Google Scholar]
  11. E. Choi, T.H. Nam, J.T. Oh, B.S. Cho. An isolation bearing for highway bridges using shape memory alloys. Materials Science and Engineering: A. Vol. 438–440, pp. 1081-1084. (2006). [CrossRef] [Google Scholar]
  12. Ozbulut O.E. Hurlebaus S. Energy-balance assessment of shape memory alloy-based seismic isolation devices. Smart Structures and Systems. Vol. 8(4), pp. 399-412. (2011). [CrossRef] [Google Scholar]
  13. Cao S., Ozbulut O. E., Shi F., and Deng J. An SMA cable-based negative stiffness seismic isolator: Development, experimental characterization, and numerical modeling. Journal of Intelligent Material Systems and Structures, Vol. 33(14), pp.1819-1833. (2022). [CrossRef] [Google Scholar]
  14. A. Uzdin and S. Prokopovich. Some principles of generating seismic input for calculating structures. Key Trends in Transportation Innovation. In E3S Web of Conferences Vol.157, p.06021 (2020). [CrossRef] [EDP Sciences] [Google Scholar]
  15. Smirnova L., Uzdin A., Polorotova N., and Freze M. Important feature of calculating bridges under seismic action. In E3S Web of Conferences, Vol. 157, p. 06020. (2020). [CrossRef] [EDP Sciences] [Google Scholar]
  16. A. Benin, A. Uzdin, O. Nesterova. Efficiency of using tuned mass damper to reduce damage after strong earthquakes. In MATEC Web of Conferences Vol. 239, 05014 (2018). [CrossRef] [EDP Sciences] [Google Scholar]
  17. C.S. Lee, K. Goda, H.P. Hong Effectiveness of using tuned-mass dampers in reducing seismic risk. Structure and Infrastructure Engineering, Vol. 8, pp. 141-156. (2012). [CrossRef] [Google Scholar]
  18. U. Shermuxamedov, S. Saliхanov, S. Shaumarov, F. Zokirov. Method of selecting optimal parameters of seismic-proof bearing parts of bridges and overpasses on high-speed railway lines. European Journal of Molecular and Clinical Medicine, Vol. 7(2), pp.1076-1084. (2020). [Google Scholar]
  19. I. Mirzaev, A.Yuvmitov, M. Turdiev, J. Shomurodov. Influence of the Vertical Earthquake Component on the Shear Vibration of Buildings on Sliding Foundations. In E3S Web of Conferences Vol. 264, p. 02022 (2021). [CrossRef] [EDP Sciences] [Google Scholar]
  20. E. Kosimov, I. Mirzaev, D. Bekmirzaev. Comparison of the impacts of harmonic and seismic waves on an underground pipeline during the Gazli earthquake. IOP Conf. Series: Materials Science and Engineering Vol.1030, p. 012082 (2021). [CrossRef] [Google Scholar]
  21. Ambraseys N., Smit P., Douglas J., Margaris B., Sigbjörnsson R., Olafsson S., Costa G. Internet site for European strong-motion data. Bollettino di geofisica teorica ed applicata, Vol. 45(3), pp.113-129. (2004). [Google Scholar]
  22. Shermuxamedov U., and Shaumarov S. Impact of configuration errors on the dynamic oscillation absorbers effectiveness of different masses on the seismic resistance of bridges. In E3S Web of Conferences, Vol. 97, p. 03017. (2019). [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.