Open Access
Issue
E3S Web Conf.
Volume 428, 2023
2023 Research, Invention, and Innovation Congress (RI2C 2023)
Article Number 01010
Number of page(s) 7
Section Energy Technology
DOI https://doi.org/10.1051/e3sconf/202342801010
Published online 14 September 2023
  1. A.D.O. E Silva, F.P. Garcia, M.T.B. Perazzini, H. Perazzini, Design and economic analysis of a pretreatment process of coffee husks biomass for an integrated bioenergy plant, Environmental Technology & Innovation, 30 (2023): 103131 [CrossRef] [Google Scholar]
  2. A.M. Sabogal-Otálora, L.F. Palomo-Hernández, Y. Piñeros-Castro, Sugar production from husk coffee using combined pretreatments, Chemical Engineering and Processing-Process Intensification, 176 (2022): 108966 [CrossRef] [Google Scholar]
  3. V. Dal-Bó, T. Lira, L. Arrieche, M. Bacelos, Process synthesis for coffee husks to energy using hierarchical approaches, Renewable Energy, 142 (2019): 195–206 [CrossRef] [Google Scholar]
  4. M. Sriariyanun, K. Kitsubthawee, Trends in lignocellulosic biorefinery for production of valueadded biochemicals, Applied Science and Engineering Progress, 13, 4 (2020): 283-284 [CrossRef] [Google Scholar]
  5. Y.S. Cheng, P. Mutrakulcharoen, S. Chuetor, K. Cheenkachorn, P. Tantayotai, E.J. Panakkal, M. Sriariyanun, Recent situation and progress in biorefining process of lignocellulosic biomass: toward green economy, Applied Science and Engineering Progress, 13, 4 (2020): 299-311 [Google Scholar]
  6. B.E.L. Baêta, P.H. de Miranda Cordeiro, F. Passosa, L.V.A. Gurgel, S.F. de Aquino, F. Fdz-Polanco, Steam explosion pretreatment improved the biomethanization of coffee husks, Bioresource Technology, 245, (2017): 66-72 [CrossRef] [PubMed] [Google Scholar]
  7. D. Jose, N. Kitiborwornkul, M. Sriariyanun, K. Keerthi, A review on chemical pretreatment methods of lignocellulosic biomass: recent advances and progress, Applied Science and Engineering Progress, 15, 4 (2022): 6210 [Google Scholar]
  8. L.C. dos Santos, O.F.H. Adarme, B. E. L. Baêta, L.V.A. Gurgel, S.F. de Aquino, Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks, Bioresource Technology, 263 (2018): 601-612 [CrossRef] [PubMed] [Google Scholar]
  9. M. del Mar Contreras-Gamez, A. Galan-Martin, N. Seixas, A.M. da Costa Lopes, A. Silvestre, E. Castro, Deep eutectic solvents for improved biomass pretreatment : Current status and future prospective towards sustainable processes, Bioresource Technology, 369 (2022): 128396 [Google Scholar]
  10. M.P. Gundupalli, S.A. Sahithi, E.P. Jayex, S. Asavasanti, P. Yasurin, Y.S. Cheng, M. Sriariyanun, Combined effect of hot water and deep eutectic solvent (DES) pretreatment on a lignocellulosic biomass mixture for improved saccharification efficiency, Bioresource Technology Reports, 17 (2022): 100986 [CrossRef] [Google Scholar]
  11. M.P. Gundupalli, P. Tantayotai, E.J. Panakkal, S. Chuetor, S. Kirdponpattara, A.S.S. Thomas, B.K. Sharma, M. Sriariyanun, Hydrothermal pretreatment optimization and deep eutectic solvent pretreatment of lignocellulosic biomass: an integrated approach, Bioresource Technology Reports, 17 (2022): 100957 [CrossRef] [Google Scholar]
  12. S. Areeya, E.J. Panakkal, M. Sriariyanun, T. Kangsadan, S. Amornraksa, U.W. Hartley, A. Tawai, A Review on chemical pretreatment of lignocellulosic biomass for the production of bioproducts: mechanisms, challenges and Applications, Applied Science and Engineering Progress, 16, 3 (2023): 6767 [Google Scholar]
  13. C.L. Yiin, K.L. Yap, A.Z.E. Ku, B.L.F. Chin, S.S.M. Lock, K.W. Cheah, A.C.M. Loy, Y.H. Chan, Recent advances in green solvents for lignocellulosic biomass pretreatment: Potential of choline chloride (ChCl) based solvents, Bioresource Technology, 333 (2021): 125195 [CrossRef] [PubMed] [Google Scholar]
  14. L. Yang, T. Zheng, C. Huang, J. Yao, Using deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin utilization of masson pine, Renewable Energy, 195 (2022): 681687 [CrossRef] [Google Scholar]
  15. E. J. Panakkal, K. Cheenkachorn, S. Chuetor, P. Tantayotai, N. Raina, Y. S. Cheng, M. Sriariyanun, Optimization of deep eutectic solvent pretreatment for bioethanol production from Napier grass, Sustainable Energy Technologies and Assessments, 54 (2022): 102856 [CrossRef] [Google Scholar]
  16. S.I. Okuofu, A.S. Gerrano, S. Singh, S. Pillai, Deep eutectic solvent pretreatment of bambara groundnut haulm for enhanced saccharification and bioethanol production. Biomass Conversion and Biorefinery, 12, 8 (2020): 3525-3533 [Google Scholar]
  17. B.T. Amena, H. Altenbach, G.S. Tibba, N. Hossain, Physico-chemical characterization of alkali-treated Ethiopian Arabica coffee husk fiber for composite materials production, Journal of Composites Science, 6, 8 (2022): 233 [CrossRef] [Google Scholar]
  18. E. J. Panakkal, M. Sriariyanun, J. Ratanapoompinyo, P. Yasurin, K. Cheenkachorn, W. Rodiahwati, P. Tantayotai, Influence of sulfuric acid pretreatment and inhibitor of sugarcane bagasse on the production of fermentable sugar and ethanol, Applied Science and Engineering Progress, 15, 1 (2022): 5238 [Google Scholar]
  19. M.C. Macawile, J. Auresenia, Utilization of supercritical carbon dioxide and co-solvent nhexane to optimize oil extraction from gliricidia sepium seeds for biodiesel production, Applied Science and Engineering Progress, 15, 1 (2022): 5404 [Google Scholar]
  20. P. Pangsri, T. Wuttipornpun, W. Songserm, Mannanase and cellulase enzyme production from the agricultural wastes by the Bacillus subtilis p2-5 strain, Applied Science and Engineering Progress, 14, 3 (2021): 425-434 [Google Scholar]
  21. M.P. Gundupalli, Y. S. Cheng, S. Chuetor, D. Bhattacharyya, M. Sriariyanun, Effect of dewaxing on saccharification and ethanol production from different lignocellulosic biomass, Bioresource Technology, 339 (2021): 125596 [CrossRef] [PubMed] [Google Scholar]
  22. E.J. Panakkal, K. Cheenkachorn, M.P. Gundupalli, N. Kitiborwornkul, M. Sriariyanun, Impact of sulfuric acid pretreatment of durian peel on the production of fermentable sugar and ethanol, Journal of the Indian Chemical Society, 98, 12 (2021): 100264 [CrossRef] [Google Scholar]
  23. P.V. Soest, R.H. Wine, Use of detergents in the analysis of fibrious feeds. IV. Determination of plant cell wall constituents, Journal of the Association of Official Analytical Chemists, 50, 1 (1967): 50–55 [Google Scholar]
  24. P.J. Van Soest, R.H. Wine, Determination of lignin and cellulose in acid detergent fiber with permanganate, Journal of the association of official analytical chemists, 51, 4 (1968): 780–785 [Google Scholar]
  25. A. Lawong, S. Sergsiri, A study of optimal values with pid controller using response surface method, Udon Thani Rajabhat University Journal of Sciences and Technology, 8, 2 (2020): 105-117 [Google Scholar]
  26. K. Anil, K.K. Jain, S. Bijender, Process optimization for chemical pretreatment of rice straw for bioethanol production, Renewable Energy, 156 (2020): 1233-1243 [CrossRef] [Google Scholar]
  27. A.S. Thomareis, G. Dimitreli, Techniques used for processed cheese characterization, In Processed Cheese Science and Technology (Woodhead Publishing, 2022) [Google Scholar]
  28. G.E. Box, D.W. Behnken, Some new three level designs for the study of quantitative variables, Technometrics 2, 4 (1960): 455–475 [CrossRef] [Google Scholar]
  29. A.H. Serafín Muñoz, C.E. Molina Guerrero, N.L. Gutierrez Ortega, J.C. Leal Vaca, A. Alvarez Vargas, C. Cano Canchola, Characterization and integrated process of pretreatment and enzymatic hydrolysis of corn straw, Waste and Biomass Valorization 10 (2019): 1857-1871 [CrossRef] [Google Scholar]
  30. V. Vandenbossche, J. Brault, G. Vilarem, Ó. Hernández-Meléndez, E. Vivaldo-Lima, M. Hernández-Luna, E. Bárzana, A. Duque, P. Manzanares, M. Ballesteros, J. Mata, E. Castellón, L. Riga, A new lignocellulosic biomass deconstruction process combining thermo-mechano chemical action and bio-catalytic enzymatic hydrolysis in a twin-screw extruder, Industrial Crops and Products, 55, (2014): 258-266 [CrossRef] [Google Scholar]
  31. M.J. Selig, S. Viamajala, S.R. Decker, M.P. Tucker, M.E. Himmel, T.B. Vinzant, Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose, Biotechnol Prog, 23, 6 (2007) : 1333-1339 [CrossRef] [PubMed] [Google Scholar]
  32. J.L. Morales-Martínez, M.G. Aguilar-Uscanga, E. Bolaños-Reynoso, L. López-Zamora, Optimization of chemical pretreatments using response surface methodology for second-generation ethanol production from coffee husk waste, BioEnergy Research, 14, 3 (2021):815–827 [CrossRef] [Google Scholar]
  33. S.W. Suciyati, P. Manurung, S. Sembiring, R. Situmeang, Comparative study of Cladophora sp. cellulose by using FTIR and XRD, Journal of Physics, Conference Series, 1751(2021): 012075 [CrossRef] [Google Scholar]
  34. X. Xian, L. Fang, Y. Zhou, B. Li, X. Zheng, Y. Liu, X. Lin, Integrated bioprocess for cellulosic ethanol production from wheat straw: New ternary deepeutectic-solvent pretreatment, enzymatic saccharification, and fermentation, Fermentation, 8, 8 (2022): 371 [CrossRef] [Google Scholar]
  35. A. Azizan, N.S.M. Shafaei, N.S Sidek, F. Hanafi, N. Mokti, S. Zaharudin, Fourier Transform infrared spectroscopy interpretation on pretreated Acacia Auriculiformis, Melastoma Malabathricum and Leucaeana Leucocephala, International Journal of Applied Engineering Research, 11, 20 (2016):10048-10051 [Google Scholar]
  36. X. Li, Y. Wei, J. Xu, N. Xu, Y. He, Quantitative visualization of lignocellulose components in transverse sections of moso bamboo based on FTIR macroand micro-spectroscopy coupled with chemometrics, Biotechnology for Biofuels, 11, 1 (2018): 1-16 [CrossRef] [PubMed] [Google Scholar]
  37. A.M. da Costa Lopes, K.G. João, D.F. Rubik, E. Bogel-Łukasik, L.C. Duarte, J. Andreaus, R. BogelŁukasik, Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation, Bioresource Technology, 142 (2013): 198-208 [CrossRef] [PubMed] [Google Scholar]
  38. R. Ahorsu, M. Constanti, P.D. de María, F. Medina, Synergy of ball milling, microwave irradiation, and deep eutectic solvents for a rapid and selective delignification: walnut shells as model for ligninenriched recalcitrant biomass, Biomass Conversion and Biorefinery, (2022): 1-13 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.