Open Access
Issue |
E3S Web Conf.
Volume 428, 2023
2023 Research, Invention, and Innovation Congress (RI2C 2023)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 8 | |
Section | Energy Technology | |
DOI | https://doi.org/10.1051/e3sconf/202342801011 | |
Published online | 14 September 2023 |
- M.P. Gundupalli, M. Sriariyanun, Recent trends and updates for chemical pretreatment of lignocellulosic biomass, Applied Science and Engineering Progress, 16, 1 (2023): 5842 [Google Scholar]
- M. Sriariyanun, K. Kitsubthawee, Trends in lignocellulosic biorefinery for production of valueadded biochemicals, Applied Science and Engineering Progress, 13, 4 (2020): 283-284 [CrossRef] [Google Scholar]
- B. Dharmalingam, P. Tantayotai, E.J. Panakkal, K. Cheenkachorn, S. Kirdponpattara, M.P. Gundupalli, Y.S. Cheng, M. Sriariyanun, Organic acid pretreatments and optimization techniques for mixed vegetable waste biomass conversion into biofuel production, BioEnergy Research, 26 (2022): 1-6 [Google Scholar]
- A.P. Borole, C.Y. Hamilton, D.J. Schell, Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via a microbial fuel cell, Environmental Science & Technology, 47, 1 (2013): 642-8 [CrossRef] [PubMed] [Google Scholar]
- S. Manikandan, S. Vickram, R. Sirohi, R. Subbaiya, R.Y. Krishnan, N. Karmegam, C. Sumathijones, R. Rajagopal, S.W. Chang, B. Ravindran, M.K. Awasthi, Critical review of biochemical pathways to transformation of waste and biomass into bioenergy, Bioresource technology, 372 (2023): 128679 [CrossRef] [PubMed] [Google Scholar]
- J. Wang, K. Ren, Y. Zhu, J. Huang, S. Liu, A review of recent advances in microbial fuel cells: preparation, operation, and application, BioTech (Basel), 11, 4 (2022): 44 [Google Scholar]
- D. Jose, A. Tawai, D. Divakaran, D.J Bhattacharyya, P. Venkatachalam, P. Tantayotai, M. Sriariyanun, Integration of deep eutectic solvent in biorefining process of lignocellulosic biomass valorization, Bioresource Technology Reports, 21 (2023): 101365 [CrossRef] [Google Scholar]
- M. Broda, D.J. Yelle, K. Serwańska, Bioethanol production from lignocellulosic biomass-challenges and solutions, Molecules, 27, 24 (2022): 8717 [CrossRef] [PubMed] [Google Scholar]
- D. Jose, N. Kitiborwornkul, M. Sriariyanun, K. Keerthi, A review on chemical pretreatment methods of lignocellulosic biomass: recent advances and progress, Applied Science and Engineering Progress, 15, 4 (2022): 6210 [Google Scholar]
- S. Areeya, E.J. Panakkal, M. Sriariyanun, T. Kangsadan, A. Tawai, S. Amornraksa, U.W. Hartley, P. Yasurin, A review on chemical pretreatment of lignocellulosic biomass for the production of bioproducts: mechanisms, challenges and applications. Applied Science and Engineering Progress, 16, 3 (2023): 6767 [Google Scholar]
- L.J. Jönsson, C. Martín, Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects, Bioresource Technology, 199 (2016): 103-112 [CrossRef] [PubMed] [Google Scholar]
- Y.S. Cheng, P. Mutrakulcharoen, S. Chuetor, K. Cheenkachorn, P. Tantayotai, E.J. Panakkal, M. Sriariyanun, Recent situation and progress in biorefining process of lignocellulosic biomass: toward green economy. Applied Science and Engineering Progress, 13, 4 (2020): 299-311 [Google Scholar]
- M. Sriariyanun, N. Kitiborwornkul, P. Tantayotai, K. Rattanaporn, P.L. Show, One-Pot ionic liquidmediated bioprocess for pretreatment and enzymatic hydrolysis of rice straw with ionic liquid-tolerance bacterial cellulase, Bioengineering, 9 (2022): 17 [CrossRef] [PubMed] [Google Scholar]
- S. Chuetor, E.J. Panakkal, T. Ruensodsai, K. Cheenkachorn, S. Kirdponpattara, Y.S. Cheng, M. Sriariyanun, Improvement of enzymatic saccharification and ethanol production from rice straw by recycled ionic liquid: Effect of anti-solvent mixture, Bioengineering, 9, 3 (2022): 115 [CrossRef] [PubMed] [Google Scholar]
- S. Maddalwar, K. Kumar Nayak, M. Kumar, L. Singh, Plant microbial fuel cell: Opportunities, challenges, and prospects, Bioresource technology, 341 (2021): 125772 [CrossRef] [PubMed] [Google Scholar]
- A.S. Jatoi, F. Akhter, S.A. Mazari, N. Sabzoi, S. Aziz, S.A. Soomro, N.M. Mubarak, H. Baloch, A.Q. Memon, S. Ahmed, Advanced microbial fuel cell for waste water treatment-a review, Environmental Science and Pollution Research, 28, 5 (2021): 50055019 [CrossRef] [PubMed] [Google Scholar]
- J. Greenman, B.A. Mendis, I. Gajda, I.A. Ieropoulos, Microbial fuel cell compared to a chemostat, Chemosphere, 296, 5 (2022): 133967. [CrossRef] [PubMed] [Google Scholar]
- D. Vidhyeswari, A. Surendhar, S. Bhuvaneshwari, General aspects and novel PEMss in microbial fuel cell technology: A review, Chemosphere, 309 (2022): 136454. [CrossRef] [PubMed] [Google Scholar]
- C. Munoz-Cupa, Y. Hu, C. Xu, A. Bassi, An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production, Science of the Total Environment, 1, 754 (2021): 142429. [CrossRef] [Google Scholar]
- M. Al-Sahari, A.A. Al-Gheethi, R. M. S. Radin Mohamed, G. Yashni, D.N. Vo, N. Ismail, Microbial fuel cell systems; developments, designs, efficiencies, and trends: A comparative study between the conventional and innovative systems, Chemosphere, 298 (2022): 134244 [CrossRef] [PubMed] [Google Scholar]
- G. Dattatraya Saratale, J. Rajesh Banu, R.A. Nastro, A. Kadier, V. Ashokkumar, C.H. Lay, J.H. Jung, H. Seung Shin, R. Ganesh Saratale, K. Chandrasekhar, Bioelectrochemical systems in aid of sustainable biorefineries for the production of value-added products and resource recovery from wastewater: A critical review and future perspectives, Bioresource technology, 359 (2022): 127435. [CrossRef] [PubMed] [Google Scholar]
- K.A. Dwivedi, S.J. Huang, C.T. Wang, Integration of various technology-based approaches for enhancing the performance of microbial fuel cell technology: A review. Chemosphere, Chemosphere, 287 (2022): 132248 [CrossRef] [PubMed] [Google Scholar]
- C. Saran, D. Purchase, G.D. Saratale, R.G. Saratale, L.F. Romanholo Ferreira, M. Bilal, H.M.N. Iqbal, C.M. Hussain, S.I. Mulla, R.N. Bharagava, Microbial fuel cell: A green eco-friendly agent for tannery wastewater treatment and simultaneous bioelectricity/power generation, Chemosphere, 312 (2023): 137072 [CrossRef] [PubMed] [Google Scholar]
- A. Shrivastava, R. Kumar Sharma, Lignocellulosic biomass based microbial fuel cells: Performance and applications, Journal of Cleaner Production, 361 (2022): 132269 [CrossRef] [Google Scholar]
- K.P. Gregoire, J.G. Becker, Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity, Bioresource Technology, 119 (2012): 208-215 [CrossRef] [PubMed] [Google Scholar]
- M.A. Jablonska, M.K. Rybarczyk, M. Lieder, Electricity generation from rapeseed straw hydrolysates using microbial fuel cells, Bioresource Technology, 208 (2016): 117-122 [CrossRef] [PubMed] [Google Scholar]
- M. Pal, R.K. Sharma, Development of wheat straw based catholyte for power generation in microbial fuel cell, Biomass Bioenergy, 138 (2020): 105591 [CrossRef] [Google Scholar]
- M. Sjöblom, L. Matsakas, A. Krige, U. Rova, P. Christakopoulos, Direct electricity generation from sweet sorghum stalks and anaerobic sludge, Industrial Crops and Products, 108 (2017): 505-511 [CrossRef] [Google Scholar]
- F. Allam, M. Elnouby, K.M. El-Khatib, D.E. ElBadan, S.A. Sabry, Water hyacinth (Eichhornia crassipes) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell, International Journal of Hydrogen Energy, 45 (2020): 5911–5927 [CrossRef] [Google Scholar]
- M. Rethinasabapathy, J.H. Lee, K.C. Roh, S.M. Kang, S.Y. Oh, B. Park, G.W. Lee, Y.L. Cha, Y.S. Huh, Silver grass-derived activated carbon with coexisting micro-, mesoand macropores as excellent bioanodes for microbial colonization and power generation in sustainable microbial fuel cells, Bioresource technology, 300 (2020): 122646 [CrossRef] [PubMed] [Google Scholar]
- X. Wang, Y.J. Feng, H.M. Wang, Y.P. Qu, Y.L. Yu, N.Q. Ren, N. Li, E. Wang, H. Lee, B.E. Logan, Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells, Environmental Science & Technology, 43 (2009): 6088–6093 [CrossRef] [PubMed] [Google Scholar]
- Y. Zuo, P.C. Maness, B.E. Logan, Electricity production from steam-exploded corn stover biomass, Energy Fuels, 20 (2006): 1716–1721 [CrossRef] [Google Scholar]
- C.Y. Ma, C.H. Wu, C.W. Lin, A novel V-shaped microbial fuel cell for electricity generation in biodegrading rice straw compost, Journal of advanced agricultural technologies, 2 (2015): 57-62 [Google Scholar]
- Y. Zhang, B. Min, L. Huang, I. Angelidaki, Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells, Applied and Environmental Microbiology, 75 (2009): 3389 [CrossRef] [PubMed] [Google Scholar]
- Y. Yang, E. Lin, S. Sun, H. Chen, A.T. Chow, Direct electricity production from subaqueous wetland sediments and banana peels using membrane-less microbial fuel cells, Industrial Crops and Products, 128 (2019): 70–79 [CrossRef] [Google Scholar]
- H.N. Dai, T.A. Nguyen, L.P. LE, M. Van Tran, T.H. Lan, C.T. Wang, Power generation of Shewanella oneidensis MR-1 microbial fuel cells in bamboo fermentation effluent, International Journal of Hydrogen Energy, 46, 31 (2019): 16612–16621 [Google Scholar]
- A. Divya Priya, Y. Pydi Setty, Cashew apple juice as substrate for microbial fuel cell, Fuel, 246 (2019): 75–78 [CrossRef] [Google Scholar]
- F. Wang, D. Ouyang, Z. Zhou, S.J. Page, D. Liu, X. Zhao, Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage, Journal of Energy Chemistry, 57 (2021): 247–280 [CrossRef] [Google Scholar]
- H. Chang, Y. Zou, R. Hu, H. Feng, H. Wu, N. Zhong, J. Hu, Membrane applications for microbial energy conversion: a review, Environmental chemistry letters, 18 (2020): 1581–1592 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.