Open Access
Issue
E3S Web Conf.
Volume 448, 2023
The 8th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2023)
Article Number 05006
Number of page(s) 12
Section Epidemiology
DOI https://doi.org/10.1051/e3sconf/202344805006
Published online 17 November 2023
  1. C. Hou et al., “The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID-19): A well-mixed SEIR model analysis,” J. Med. Virol., vol. 92, no. 7, pp. 841–848, 2020, doi: 10.1002/jmv.25827. [CrossRef] [PubMed] [Google Scholar]
  2. J. Frausto-Solís, L. J. Hernández-González, J. J. González-Barbosa, J. P. Sánchez-Hernández, and E. Román-Rangel, “Convolutional Neural Network–Component Transformation (CNN–CT) for Confirmed COVID-19 Cases,” Math. Comput. Appl., vol. 26, no. 2, p. 29, 2021, doi: 10.3390/mca26020029. [Google Scholar]
  3. S. Zhao et al., “Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak,” Int. J. Infect. Dis., vol. 92, pp. 214–217, 2020, doi: 10.1016/j.ijid.2020.01.050. [CrossRef] [Google Scholar]
  4. M. I. B. Ahmed, A. ur Rahman, M. Farooqui, F. Alamoudi, R. Baageel, and A. Alqarni, “Early Identification of COVID-19 Using Dynamic Fuzzy Rule Based System,” Math. Model. Eng. Probl., vol. 8, no. 5, pp. 805–812, 2021, doi: 10.18280/mmep.080517. [CrossRef] [Google Scholar]
  5. B. K. Mishra et al., “COVID-19 created chaos across the globe: Three novel quarantine epidemic models,” Chaos, Solitons and Fractals, vol. 138, p. 109928, 2020, doi: 10.1016/j.chaos.2020.109928. [CrossRef] [Google Scholar]
  6. J. K. K. Asamoah, M. A. Owusu, Z. Jin, F. T. Oduro, A. Abidemi, and E. O. Gyasi, “Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana,” Chaos, Solitons and Fractals, vol. 140, no. February, p. 110103, 2020, doi: 10.1016/j.chaos.2020.110103. [CrossRef] [Google Scholar]
  7. https://covid19.who.int/ (accessed Jul. 01, 2022). [Google Scholar]
  8. https://covid19.go.id/id (accessed Jul. 01, 2022). [Google Scholar]
  9. S. Annas, M. Isbar Pratama, M. Rifandi, W. Sanusi, and S. Side, “Stability analysis and numerical simulation of SEIR model for pandemic COVID-19 spread in Indonesia,” Chaos, Solitons and Fractals, vol. 139, p. 110072, 2020, doi: 10.1016/j.chaos.2020.110072. [CrossRef] [Google Scholar]
  10. M. Kamrujjaman, U. Ghosh, and M. S. Islam, “Pandemic and the Dynamics of SEIR Model: Case COVID-19,” no. April, pp. 1–15, 2020, doi: 10.20944/preprints202004.0378.v1. [Google Scholar]
  11. R. Ghostine, M. Gharamti, S. Hassrouny, and I. Hoteit, “An extended seir model with for forecasting the covid-19 pandemic in saudi arabia using an ensemble kalman filter,” Mathematics, vol. 9, p. 636, 2021. [CrossRef] [Google Scholar]
  12. L. Mangoni and M. Pistilli, “Epidemic Analysis of COVID-19 in Italy by Dynamical Modelling,” SSRN Electron. J., no. February, 2020, doi: 10.2139/ssrn.3567770. [Google Scholar]
  13. P. Wintachai and K. Prathom, “Stability analysis of SEIR model related to efficiency of vaccines for COVID-19 situation,” Heliyon, vol. 7, no. 4, p. e06812, 2021, doi: 10.1016/j.heliyon.2021.e06812. [CrossRef] [PubMed] [Google Scholar]
  14. D. Aldila, M. Z. Ndii, and B. M. Samiadji, “Optimal control on COVID-19 eradication program in Indonesia under the effect of community awareness,” Math. Biosci. Eng., vol. 17, no. 6, pp. 6355–6389, 2020, doi: 10.3934/mbe.2020335. [CrossRef] [Google Scholar]
  15. Widowati, Sutrisno, P. S. Sasongko, M. Brilliant, and E. Triyana, “Mathematical Modeling and Stability Analysis of the COVID-19 Spread by Considering Quarantine and Hospitalize,” Math. Model. Eng. Probl., vol. 9, no. 6, pp. 1545–1556, 2022, doi: 10.18280/MMEP.090614. [CrossRef] [Google Scholar]
  16. N. A. Istiqomah and R. Herdiana, “Stability Analysis of the Covid-19 Spread Model Considering Physical Distancing and Self-Precaution,” International Journal of Advances in Engineering and Management, vol. 4, no. 1, pp. 768–778, 2022, doi: 10.35629/5252-0401768778. [Google Scholar]
  17. U. A. Fitriani, Widowati, Sutimin, and P. S. Sasongko, “Mathematical modeling and analysis of COVID-19 transmission dynamics in Central Java Province, Indonesia,” J. Phys. Conf. Ser., vol. 1943, no. 1, 2021, doi: 10.1088/1742-6596/1943/1/012139. [CrossRef] [Google Scholar]
  18. https://corona.jakarta.go.id/ (accessed Mar. 01, 2022). [Google Scholar]
  19. R. R. Musafir, A. Suryanto, and I. Darti, “Dynamics of COVID-19 Epidemic Model with Asymptomatic Infection, Quarantine, Protection and Vaccination,” Commun. Biomath. Sci., vol. 4, no. 2, pp. 106–124, 2021, doi: 10.5614/cbms.2021.4.2.3. [Google Scholar]
  20. S. M. Rahmasari, “Model Stability Analysis And Optimal Control Of The Spread Of COVID-19,” Thesis, Master Program of Mathematics, Faculty of Science and Mathematics, Diponegoro University, 2022. [Google Scholar]
  21. M. Martcheva, Chapter 2: Introduction to Epidemic Modeling” in An Introduction to Mathematical Epidemiology. 2015. [Google Scholar]
  22. F. Van den Bosch and M. J. Jeger, “The basic reproduction number of vector-borne plant virus epidemics,” Virus Res., vol. 241, pp. 196–202, 2017, doi: 10.1016/j.virusres.2017.06.014. [CrossRef] [Google Scholar]
  23. C. Yang and J. Wang, “A mathematical model for the novel coronavirus epidemic in Wuhan, China,” Math. Biosci. Eng., vol. 17, no. 3, pp. 2708–2724, 2020, doi: 10.3934/mbe.2020148. [CrossRef] [Google Scholar]
  24. A. D. Zewdie and S. Gakkhar, “A Mathematical Model for Nipah Virus Infection,” J. Appl. Math., vol. 2020, 2020, doi: 10.1155/2020/6050834. [CrossRef] [Google Scholar]
  25. S. Schecter, “Geometric singular perturbation theory analysis of an epidemic model with spontaneous human behavioral change,” J. Math. Biol., vol. 82, no. 6, pp. 1–26, 2021, doi: 10.1007/s00285-021-01605-2. [CrossRef] [PubMed] [Google Scholar]
  26. https://jakarta.bps.go.id/ (accessed Mar. 01, 2022). [Google Scholar]
  27. T. Daniya, M. Geetha, B. Santhosh Kumar, and R. Cristin, “Least square estimation of parameters for linear regression,” Int. J. Control Autom., vol. 13, no. 2, pp. 447–452, 2020. [Google Scholar]
  28. T. Nakamura and M. Small, “Modeling nonlinear time series using improved least squares method,” Int. J. Bifurc. Chaos, vol. 16, no. 2, pp. 445–464, 2006, doi: 10.1142/S0218127406014927. [CrossRef] [Google Scholar]
  29. J. Cao, J. Z. Huang, and H. Wu, “Penalized nonlinear least squares estimation of time-varying parameters in ordinary differential equations,” J. Comput. Graph. Stat., vol. 21, no. 1, pp. 42–56, 2012, doi: 10.1198/jcgs.2011.10021. [CrossRef] [PubMed] [Google Scholar]
  30. R. Resmawan and L. Yahya, “Sensitivity Analysis of Mathematical Model of Coronavirus Disease (COVID-19) Transmission,” CAUCHY, vol. 6, no. 2, pp. 91–99, 2020, doi: 10.18860/ca.v6i2.9165. [CrossRef] [Google Scholar]
  31. F. Malorung, M. Blegur, R. M. Pangaribuan, and M. Z. Ndii, “Sensitivity Analysis of Mathematical Models of Disease Spread by Vaccination,” Journal of Integrative Mathematics, vol. 14, no. 1, p. 9, 2018, doi: 10.24198/jmi.v14.n1.16000.9-15. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.