Open Access
E3S Web Conf.
Volume 495, 2024
2nd International Colloquium on Youth, Environment and Sustainability (ICYES 2023)
Article Number 01006
Number of page(s) 9
Section Economy, Energy, and Technology
Published online 23 February 2024
  1. Maurya R, Gohil N, Nixon S, Kumar N, Noronha SB, Dhali D, et al. Rewiring of metabolic pathways in yeasts for sustainable production of biofuels. Bioresource Technology. 2023;372(January):128668. [CrossRef] [PubMed] [Google Scholar]
  2. Vasconcelos B, Teixeira JC, Dragone G, Teixeira JA. Oleaginous yeasts for sustainable lipid production—from biodiesel to surf boards, a wide range of “green” applications. Applied Microbiology and Biotechnology. 2019;3651–67. [Google Scholar]
  3. Rawoof SAA, Kumar PS, Vo DVN, Devaraj K, Mani Y, Devaraj T, et al. Production of optically pure lactic acid by microbial fermentation: a review. Environmental Chemistry Letters. 2021;19(1):539–56. [CrossRef] [Google Scholar]
  4. Poontawee R, Lorliam W, Polburee P, Limtong S. Oleaginous yeasts: Biodiversity and cultivation. Fungal Biology Reviews. 2023;44:100295. [CrossRef] [Google Scholar]
  5. Sreeharsha RV, Mohan SV. Obscure yet Promising Oleaginous Yeasts for Fuel and Chemical Production. Trends in Biotechnology. 2020;38(8):873–87. [CrossRef] [PubMed] [Google Scholar]
  6. Soong YHV, Zhao L, Liu N, Yu P, Lopez C, Olson A, et al. Microbial synthesis of wax esters. Metabolic Engineering. 2021;67(December 2020):428–42. [CrossRef] [PubMed] [Google Scholar]
  7. Caporusso A, Capece A, De Bari I. Oleaginous yeasts as cell factories for the sustainable production of microbial lipids by the valorization of agri-food wastes. Fermentation. 2021;7(2):1–33. [Google Scholar]
  8. Titorenko VI, Rachubinski RA. Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol. 1998 May;18(5):2789–803. [CrossRef] [PubMed] [Google Scholar]
  9. Liu Z, Moradi H, Shi S, Darvishi F. Yeasts as microbial cell factories for sustainable production of biofuels. Renewable and Sustainable Energy Reviews. 2021;143(March):110907. [CrossRef] [Google Scholar]
  10. Groenewald M, Boekhout T, Neuveglise C, Gaillardin C, Van Dijck PWM, Wyss M. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Critical Reviews in Microbiology. 2014;40(3):187–206. [CrossRef] [PubMed] [Google Scholar]
  11. Kavšcek M, G Bhutada, T Madl, K Natter. Optimization of lipid production with a genomescale model of Yarrowia lipolytica. Vol. 9, BMC Systems Biology. 2015. [Google Scholar]
  12. Abdel-Mawgoud AM, KA Markham, CM Palmer, N Liu, G Stephanopoulos, HS Alper. Metabolic engineering in the host Yarrowia lipolytica. Metabolic Engineering. 2018;50:192–208. [CrossRef] [PubMed] [Google Scholar]
  13. A Abghari, S Chen. Yarrowia lipolytica as an oleaginous cell factory platform for production of fatty acid-based biofuel and bioproducts. Frontiers in Energy Research. 2014;2(JUN). [Google Scholar]
  14. W Zeng, F Fang, S Liu, G Du, J Chen, J Zhou. Comparative genomics analysis of a series of Yarrowia lipolytica WSH-Z06 mutants with varied capacity for α-ketoglutarate production. Journal of Biotechnology. 2016;239:76–82. [CrossRef] [PubMed] [Google Scholar]
  15. Frohlich-Wyder MT, Arias-Roth E, E Jakob. Cheese yeasts. Yeast. 2019;36(3):129–41. [CrossRef] [PubMed] [Google Scholar]
  16. Desnos-Ollivier M, Letscher-Bru V, C Neuveglise, F Dromer. Yarrowia lipolytica causes sporadic cases and local outbreaks of infections and colonisation. Mycoses. 2020;63(7):737–45. [CrossRef] [PubMed] [Google Scholar]
  17. C Madzak. Yarrowia lipolytica strains and their biotechnological applications: How natural biodiversity and metabolic engineering could contribute to cell factories improvement. Journal of Fungi. 2021;7(7). [Google Scholar]
  18. C Neuveglise, C Marck, C Gaillardin. The intronome of budding yeasts. Comptes Rendus - Biologies. 2011;334(8–9):662–70. [CrossRef] [Google Scholar]
  19. AMV Gomes, TS Carmo, LS Carvalho, FM Bahia, NS Parachin. Comparison of yeasts as hosts for recombinant protein production. Microorganisms. 2018;6(2). [Google Scholar]
  20. Q Gao, X Cao, YY Huang, JL Yang, J Chen, LJ Wei, et al. Overproduction of Fatty Acid Ethyl Esters by the Oleaginous Yeast Yarrowia lipolytica through Metabolic Engineering and Process Optimization. ACS Synthetic Biology. 2018;7(5):1371–80. [CrossRef] [PubMed] [Google Scholar]
  21. P Xu, K Qiao, G Stephanopoulos. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnology and Bioengineering. 2017;114(7):1521–30. [CrossRef] [PubMed] [Google Scholar]
  22. E Holtzapple, Schmidt-Dannert C. Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: Identification and characterization of isoprenoid coenzyme a synthetase and wax ester syethases. Journal of Bacteriology. 2007;189(10):3804–12. [CrossRef] [PubMed] [Google Scholar]
  23. AB Juanssilfero, P Kahar, RL Amza, N Miyamoto, H Otsuka, H Matsumoto, et al. Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi. Journal of Bioscience and Bioengineering. 2018;125(6):695–702. [CrossRef] [PubMed] [Google Scholar]
  24. TK Ng, AQ Yu, H Ling, Pratomo Juwono NK, WJ Choi, SSJ Leong, et al. Engineering Yarrowia lipolytica towards food waste bioremediation: Production of fatty acid ethyl esters from vegetable cooking oil. Journal of Bioscience and Bioengineering. 2020;129(1):31–40. [CrossRef] [PubMed] [Google Scholar]
  25. A Beopoulos, Z Mrozova, F Thevenieau, Le Dall MT, I Hapala, S Papanikolaou, et al. Control of lipid accumulation in the yeast Yarrowia lipolytica. Applied and Environmental Microbiology. 2008;74(24):7779–89. [CrossRef] [PubMed] [Google Scholar]
  26. J Yan, Y Yan, C Madzak, B Han. Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway. Critical Reviews in Biotechnology. 2017;37(1):26–36. [CrossRef] [PubMed] [Google Scholar]
  27. X Wang, X Qin, D Li, B Yang, Y Wang. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanoltolerant immobilized lipase. Bioresource Technology. 2017;235:18–24. [CrossRef] [PubMed] [Google Scholar]
  28. AM Silverman, K Qiao, P Xu, G Stephanopoulos. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology. 2016;100(8):3781–98. [CrossRef] [PubMed] [Google Scholar]
  29. K Xu, L Gao, JU Hassan, Z Zhao, C Li, YX Huo, et al. Improving the thermo-tolerance of yeast base on the antioxidant defense system. Chemical Engineering Science. 2018;175:335–42. [CrossRef] [Google Scholar]
  30. F Abeln, CJ Chuck. The role of temperature, pH and nutrition in process development of the unique oleaginous yeast Metschnikowia pulcherrima. Journal of Chemical Technology and Biotechnology. 2020;95(4):1163–72. [CrossRef] [Google Scholar]
  31. A Timoumi, M Cleret, C Bideaux, SE Guillouet, Y Allouche, Molina-Jouve C, et al. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode. Applied Microbiology and Biotechnology. 2017;101(1):351–66. [CrossRef] [PubMed] [Google Scholar]
  32. C Huang, H Wu, ZJ Liu, J Cai, WY Lou, MH Zong. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. Biotechnology for Biofuels. 2012;5(1):4. [CrossRef] [PubMed] [Google Scholar]
  33. S Jezierska, S Claus, Van Bogaert INA. Identification and importance of mitochondrial citrate carriers and ATP citrate lyase for glycolipid production in Starmerella bombicola. Applied Microbiology and Biotechnology. 2020;104(14):6235–48. [CrossRef] [PubMed] [Google Scholar]
  34. J Lee, J Kim, YS Ok, EE Kwon. Rapid biodiesel synthesis from waste pepper seeds without lipid isolation step. Bioresource Technology. 2017;239:17–20. [CrossRef] [PubMed] [Google Scholar]
  35. A Tsirigka, M Ntoula, KN Kontogiannopoulos, AJ Karabelas, SI Patsios. Optimization of Solvent Extraction of Lipids from Yarrowia lipolytica towards Industrial Applications. Fermentation. 2023;9(1):1–18. [Google Scholar]
  36. Bligh and Dier. Canadian Journal of Biochemistry and Physiology. Canadian Journal of Biochemistry and Physiology. 1959;37(8). [Google Scholar]
  37. J FOLCH, M LEES, SLOANE STANLEY GH. A simple method for the isolation and purification of total lipides from animal tissues. The Journal of biological chemistry. 1957;226(1):497–509. [CrossRef] [PubMed] [Google Scholar]
  38. S Sarantou, NG Stoforos, O Kalantzi, S Papanikolaou. Biotechnological valorization of biodieselderived glycerol: Trials with the non-conventional yeasts Yarrowia lipolytica and Rhodosporidium sp. Carbon Resources Conversion. 2021;4(November 2020):61–75. [CrossRef] [Google Scholar]
  39. A Meullemiestre, C Breil, Abert-Vian M, F Chemat. Microwave, ultrasound, thermal treatments, and bead milling as intensification techniques for extraction of lipids from oleaginous Yarrowia lipolytica yeast for a biojetfuel application. Bioresource Technology. 2016;211:190–9. [CrossRef] [PubMed] [Google Scholar]
  40. K Alfonsi, J Colberg, PJ Dunn, T Fevig, S Jennings, TA Johnson, et al. Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation. Green Chemistry. 2008;10(1):31–6. [CrossRef] [Google Scholar]
  41. P Xu, K Qiao, WS Ahn, G Stephanopoulos. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(39):10848–53. [CrossRef] [PubMed] [Google Scholar]
  42. Y Zhang, X Guo, H Yang, S Shi. The Studies in Constructing Yeast Cell Factories for the Production of Fatty Acid Alkyl Esters. Frontiers in Bioengineering and Biotechnology. 2022;9(January):1–9. [Google Scholar]
  43. K Qiao, TM Wasylenko, K Zhou, P Xu, G Stephanopoulos. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology. 2017;35(2):173–7. [CrossRef] [PubMed] [Google Scholar]
  44. S Bellou, IE Triantaphyllidou, P Mizerakis, G Aggelis. High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. Journal of Biotechnology. 2016;234:116–26. [CrossRef] [PubMed] [Google Scholar]
  45. A Yu, Y Zhao, J Li, S Li, Y Pang, Y Zhao, et al. Sustainable production of FAEE biodiesel using the oleaginous yeast Yarrowia lipolytica. MicrobiologyOpen. 2020;9(7):1–14. [Google Scholar]
  46. L Zhao. Exploring the production of high-value compounds in plant Catharanthus roseus hairy roots and yeast Yarrowia lipolytica. 2017; [Google Scholar]
  47. Yook S Do, Kim J, Woo HM, Um Y, Lee SM. Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents. Renewable Energy. 2019;132:61–7. [CrossRef] [Google Scholar]
  48. M Tai, G Stephanopoulos. Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering. 2013;15(1):1–9. [CrossRef] [PubMed] [Google Scholar]
  49. SK Yellapu, J Bezawada, R Kaur, M Kuttiraja, RD Tyagi. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach. Bioresource Technology. 2016;218:667–73. [CrossRef] [PubMed] [Google Scholar]
  50. M Vasaki, M Sithan, G Ravindran, B Paramasivan, G Ekambaram, RR Karri. Biodiesel production from lignocellulosic biomass using Yarrowia lipolytica. Energy Conversion and Management: X. 2022;13(December 2021):100167. [CrossRef] [Google Scholar]
  51. L Drevillon, M Koubaa, E Vorobiev. Lipid extraction from Yarrowia lipolytica biomass using high-pressure homogenization. Biomass and Bioenergy. 2018;115(February):143–50. [CrossRef] [Google Scholar]
  52. J Milanesio, P Hegel, Medina-Gonzalez Y, S Camy, JS Condoret. Extraction of lipids from Yarrowia Lipolytica. Journal of Chemical Technology and Biotechnology. 2013;88(3):378–87. [CrossRef] [Google Scholar]
  53. KO Yu, J Jung, SW Kim, CH Park, SO Han. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnology and Bioengineering. 2012;109(1):110–5. [CrossRef] [PubMed] [Google Scholar]
  54. HH Liu, XJ Ji, H Huang. Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnology Advances. 2015;33(8):1522–46. [CrossRef] [PubMed] [Google Scholar]
  55. M Trindade. Increased Biodiesel Efficiency. Green Energy and Technology. 2018. 186 p. [Google Scholar]
  56. dos Santos LK, RR Hatanaka, de Oliveira JE, DL Flumignan. Experimental factorial design on hydroesterification of waste cooking oil by subcritical conditions for biodiesel production. Renewable Energy. 2017;114:574–80. [CrossRef] [Google Scholar]
  57. M Atapour, HR Kariminia, PM Moslehabadi. Optimization of biodiesel production by alkalicatalyzed transesterification of used frying oil. Process Safety and Environmental Protection. 2014;92(2):179–85. [CrossRef] [Google Scholar]
  58. Cesar A da S, Werderits DE, de Oliveira Saraiva GL, Guabiroba RC da S. The potential of waste cooking oil as supply for the Brazilian biodiesel chain. Renewable and Sustainable Energy Reviews. 2017;72(November 2015):246–53. [CrossRef] [Google Scholar]
  59. YK Park, JM Nicaud, Ledesma-Amaro R. The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends in Biotechnology. 2018;36(3):304–17. [CrossRef] [PubMed] [Google Scholar]
  60. ER Marella, C Holkenbrink, V Siewers, I Borodina. Engineering microbial fatty acid metabolism for biofuels and biochemicals. Current Opinion in Biotechnology. 2018;50(Table 1):39–46. [CrossRef] [PubMed] [Google Scholar]
  61. JL Zhang, YX Cao, YZ Peng, CC Jin, QY Bai, RS Zhang, et al. High production of fatty alcohols in Yarrowia lipolytica by coordination with glycolysis. Science China Chemistry. 2019;62(8):1007–16. [CrossRef] [Google Scholar]
  62. CD Doan, CM To, De Vrieze M, F Lynen, S Danthine, A Brown, et al. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chemistry. 2017;214:717–25. [CrossRef] [PubMed] [Google Scholar]
  63. MM Fiume, BA Heldreth, WF Bergfeld, Belsito D V., RA Hill, CD Klaassen, et al. Safety Assessment of Alkyl Esters as Used in Cosmetics. International Journal of Toxicology. 2015;34(Supplement 2):5S-69S. [CrossRef] [Google Scholar]
  64. M Waltermann, T Stoveken, A Steinbuchel. Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: Properties, function and occurrence of wax ester synthases/acyl- CoA:diacylglycerol acyltransferases. Biochimie. 2007;89(2):230–42. [CrossRef] [PubMed] [Google Scholar]
  65. R Jetter, L Kunst. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant Journal. 2008;54(4):670–83. [CrossRef] [PubMed] [Google Scholar]
  66. L Wenning, T Yu, F David, J Nielsen, V Siewers. Establishing very long-chain fatty alcohol and wax ester biosynthesis in Saccharomyces cerevisiae. Biotechnology and Bioengineering. 2017;114(5):1025–35. [CrossRef] [PubMed] [Google Scholar]
  67. L Wenning. Synthesis of jojoba ‐ like wax esters in metabolically engineered strains of Saccharomyces cerevisiae. 2018; [Google Scholar]
  68. L Deng, X Wang, K Nie, F Wang, J Liu, P Wang, et al. Synthesis of wax esters by lipase-catalyzed esterification with immobilized lipase from Candida sp. 99-125. Chinese Journal of Chemical Engineering. 2011;19(6):978–82. [CrossRef] [Google Scholar]
  69. MN Baeshen, Al-Hejin AM, RS Bora, MMM Ahmed, HAI Ramadan, KS Saini, et al. Production of biopharmaceuticals in E. Coli: Current scenario and future perspectives. Journal of Microbiology and Biotechnology. 2015;25(7):953–62. [CrossRef] [PubMed] [Google Scholar]
  70. S Pontrelli, TY Chiu, EI Lan, FYH Chen, P Chang, JC Liao. Escherichia coli as a host for metabolic engineering. Metabolic Engineering. 2018;50(February):16–46. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.