Open Access
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01003
Number of page(s) 11
Section Materials Science
Published online 25 March 2024
  1. Basu, B., Gowtham, N. H., Xiao, Y., Kalidindi, S. R., & Leong, K. W. (2022). Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials. Acta Biomaterialia, 143, 1–25. [CrossRef] [PubMed] [Google Scholar]
  2. McDonald, S. M., Augustine, E. K., Lanners, Q., Rudin, C., Catherine Brinson, L., & Becker, M. L. (2023). Applied machine learning as a driver for polymeric biomaterials design. Nature Communications, 14(1), 4838. [Google Scholar]
  3. Mateu-Sanz, M., Fuenteslópez, C. V., Uribe-Gomez, J., Haugen, H. J., Pandit, A., Ginebra, M. P., … & Samara, A. (2023). Redefining biomaterial biocompatibility: challenges for artificial intelligence and text mining. Trends in Biotechnology. [Google Scholar]
  4. Rickert, C. A., & Lieleg, O. (2022). Machine learning approaches for biomolecular, biophysical, and biomaterials research. Biophysics Reviews, 3(2). [Google Scholar]
  5. Awasthi, A., Saxena, K. K., & Arun, V. (2020). Sustainability and survivability in manufacturing sector. In Modern Manufacturing Processes (pp. 205–219). Woodhead Publishing. [Google Scholar]
  6. Guo, J. L., Januszyk, M., & Longaker, M. T. (2023). Machine learning in tissue engineering. Tissue Engineering Part A, 29(1-2), 2–19. [Google Scholar]
  7. Mozafari, N., Mozafari, N., Dehshahri, A., & Azadi, A. (2023). Knowledge Gaps in Generating Cell-Based Drug Delivery Systems and a Possible Meeting with Artificial Intelligence. Molecular Pharmaceutics, 20(8), 3757–3778. [Google Scholar]
  8. Stuart, S., Watchorn, J., & Gu, F. X. (2023). Sizing up feature descriptors for macromolecular machine learning with polymeric biomaterials. Npj Computational Materials, 9(1), 102. [Google Scholar]
  9. Le, T., & Bojovschi, A. (2019). Employing Artificial Intelligence To Design Intelligent Biomaterials. Journal Of Experimental & Molecular Biology, 20(3). [Google Scholar]
  10. Arun, V., Singh, A. K., Shukla, N. K., & Tripathi, D. K. (2016). Design and performance analysis of SOA - MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Optical and quantum electronics, 48, 1–15. [CrossRef] [Google Scholar]
  11. Ramadugu, S., Ledella, S. R. K., Gaduturi, J. N. J., Pinninti, R. R., Sriram, V., & Saxena, K. K. (2023). Environmental life cycle assessment of an automobile component fabricated by additive and conventional manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–12. [Google Scholar]
  12. Jha, R., & Jha, B. K. (2022). Artificial Intelligence-aided Materials Design: AI-algorithms and Case Studies on Alloys and Metallurgical Processes. CRC Press. [Google Scholar]
  13. Karanasiou, G. S., Papafaklis, M. I., Conway, C., Michalis, L. K., Tzafriri, R., Edelman, E. R., & Fotiadis, D. I. (2017). Stents: biomechanics, biomaterials, and insights from computational modeling. Annals of biomedical engineering, 45, 853–872. [CrossRef] [PubMed] [Google Scholar]
  14. Melancon, D., Bagheri, Z. S., Johnston, R. B., Liu, L., Tanzer, M., & Pasini, D. (2017). Mechanical characterization of structurally porous biomaterials built via additive manufacturing: experiments, predictive models, and design maps for load-bearing bone replacement implants. Acta biomaterialia, 63, 350–368. [CrossRef] [PubMed] [Google Scholar]
  15. Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2022). Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–13. [Google Scholar]
  16. Abramson, S. D., Alexe, G., Hammer, P. L., & Kohn, J. (2005). A computational approach to predicting cell growth on polymeric biomaterials. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 73(1), 116–124. [Google Scholar]
  17. Smith, J. R., Seyda, A., Weber, N., Knight, D., Abramson, S., & Kohn, J. (2004). Integration of combinatorial synthesis, rapid screening, and computational modeling in biomaterials development. Macromolecular Rapid Communications, 25(1), 127–140. [Google Scholar]
  18. Wolf, M. T., Vodovotz, Y., Tottey, S., Brown, B. N., & Badylak, S. F. (2015). Predicting in vivo responses to biomaterials via combined in vitro and in silico analysis. Tissue Engineering Part C: Methods, 21(2), 148–159. [Google Scholar]
  19. Wissing, T. B., Bonito, V., Bouten, C. V., & Smits, A. I. (2017). Biomaterial-driven in situ cardiovascular tissue engineering—a multi-disciplinary perspective. NPJ Regenerative medicine, 2(1), 18. [Google Scholar]
  20. Tripathi, G. P., Agarwal, S., Awasthi, A., & Arun, V. (2022, August). Artificial Hip Prostheses Design and Its Evaluation by Using Ansys Under Static Loading Condition. In Biennial International Conference on Future Learning Aspects of Mechanical Engineering (pp. 815–828). Singapore: Springer Nature Singapore. [Google Scholar]
  21. Guo, K., Yang, Z., Yu, C. H., & Buehler, M. J. (2021). Artificial intelligence and machine learning in design of mechanical materials. Materials Horizons, 8(4), 1153–1172. [CrossRef] [PubMed] [Google Scholar]
  22. Contreas, L. (2023). Application of Machine Learning techniques for biomaterials design (Doctoral dissertation, University of Nottingham). [Google Scholar]
  23. Saxena, K. K., Srivastava, V., & Sharma, K. (2012). Calculation of Fundamental Mechanical Properties of Single Walled Carbon Nanotube using Non-local Elasticity. Advanced Materials Research, 383, 3840–3844. [Google Scholar]
  24. Al-Kharusi, G., Dunne, N. J., Little, S., & Levingstone, T. J. (2022). The role of machine learning and design of experiments in the advancement of biomaterial and tissue engineering research. Bioengineering, 9(10), 561. [CrossRef] [PubMed] [Google Scholar]
  25. Vinoth, A., & Datta, S. (2022). Computational intelligence based design of biomaterials. Computer Methods in Materials Science, 22. [Google Scholar]
  26. Awasthi, A., Saxena, K. K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials Today: Proceedings, 44, 2069–2079. [CrossRef] [Google Scholar]
  27. Suwardi, A., Wang, F., Xue, K., Han, M. Y., Teo, P., Wang, P., … & Loh, X. J. (2022). Machine learning- driven biomaterials evolution. Advanced Materials, 34(1), 2102703. [CrossRef] [Google Scholar]
  28. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017, August). Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [Google Scholar]
  29. Singh, B., Saxena, K. K., Dagwa, I. M., Singhal, P., & Malik, V. (2023). Optimization Of Machining Characteristics of Titanium-Based Biomaterials: Approach to Optimize Surface Integrity for Implants Applications. Surface Review and Letters, 2340008. [Google Scholar]
  30. Kerner, J., Dogan, A., & von Recum, H. (2021). Machine learning and big data provide crucial insight for future biomaterials discovery and research. Acta Biomaterialia, 130, 54–65. [CrossRef] [PubMed] [Google Scholar]
  31. Singh, A. V., Rosenkranz, D., Ansari, M. H. D., Singh, R., Kanase, A., Singh, S. P., … & Luch, A. (2020). Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction. Advanced Intelligent Systems, 2(12), 2000084. [CrossRef] [Google Scholar]
  32. Balguri, P. K., Samuel, D. H., & Thumu, U. (2021). A review on mechanical properties of epoxy nanocomposites. Materials Today: Proceedings, 44, 346–355. [Google Scholar]
  33. Gupta, T. K., Budarapu, P. R., Chappidi, S. R., Yb, S.S., Paggi, M., & Bordas, S.P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  34. Shukla, A., Gupta, N., Ramya, N. S., Saxena, K. K., Iqbal, A., & Djavanroodi, F. (2023). Environmental sustainability in construction: Influence of Megaterium Bacteria on the durability and mechanical properties of concrete incorporating calcined clay. Mechanics of Advanced Materials and Structures, 1–13. [Google Scholar]
  35. Korpi, A. G., Țălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., … & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8), 086463. [Google Scholar]
  36. SudhirSastry, Y. B., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [Google Scholar]
  37. Saxena, K. K., & Lal, A. (2012). Comparative Molecular Dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-wales and vacancy defects. Procedia Engineering, 38, 2347–2355. [CrossRef] [Google Scholar]
  38. Telagam, N., Kandasamy, N., & Nanjundan, M. (2017). Smart sensor network based high quality air pollution monitoring system using labview. International Journal of Online Engineering (iJOE), 13(08), 79–87. [CrossRef] [Google Scholar]
  39. Reddy, K. S. P., Roopa, Y. M., Ln, K.R., & Nandan, N.S. (2020, July). IoT based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE. [Google Scholar]
  40. Dwivedi, A., Shukla, S. K., Bharti, P. K., Gupta, N., Saxena, K. K., & Dwivedi, Y. D. (2023). Comparative study of polyanthranilic acid and sulphonated polyaniline on the mild steel corrosion in aqueous hydrochloric acid. Canadian Metallurgical Quarterly, 1–9. [CrossRef] [Google Scholar]
  41. Arun, V., Shukla, N. K., Singh, A. K., & Upadhyay, K. K. (2015, September). Design of all optical line selector based on SOA for data communication. In Proceedings of the Sixth International Conference on Computer and Communication Technology 2015 (pp. 281–285). [Google Scholar]
  42. Ajith, J. B., Manimegalai, R., & Ilayaraja, V. (2020, February). An IoT based smart water quality monitoring system using cloud. In 2020 International conference on emerging trends in information technology and engineering (ic-ETITE) (pp. 1–7). IEEE. [Google Scholar]
  43. Basavapoornima, C., Kesavulu, C. R., Maheswari, T., Pecharapa, W., Depuru, S. R., & Jayasankar, C. K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  44. Arora, G. S., & Saxena, K. K. (2023). A review study on the influence of hybridization on mechanical behaviour of hybrid Mg matrix composites through powder metallurgy. Materials Today: Proceedings. [Google Scholar]
  45. Kumari, C. U., Murthy, A. S. D., Prasanna, B. L., Reddy, M. P. P., & Panigrahy, A. K. (2021). An automated detection of heart arrhythmias using machine learning technique: SVM. Materials Today: Proceedings, 45, 1393–1398. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.