Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01005
Number of page(s) 11
Section Materials Science
DOI https://doi.org/10.1051/e3sconf/202450501005
Published online 25 March 2024
  1. Sadeghi, A., Afshari, E., Hashemi, M., Kaplan, D., & Mozafari, M. (2023). Brainy biomaterials: Latest advances in smart biomaterials to develop the next generation of neural interfaces. Current Opinion in Biomedical Engineering, 25, 100420. [Google Scholar]
  2. Moxon, K. A., Kalkhoran, N. M., Markert, M., Sambito, M. A., McKenzie, J. L., & Webster, J. T. (2004). Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. IEEE Transactions on Biomedical Engineering, 51(6), 881–889. [Google Scholar]
  3. Scaini, D., & Ballerini, L. (2018). Nanomaterials at the neural interface. Current opinion in neurobiology, 50, 50–55. [Google Scholar]
  4. Wang, M., Mi, G., Shi, D., Bassous, N., Hickey, D., & Webster, T. J. (2018). Nanotechnology and nanomaterials for improving neural interfaces. Advanced Functional Materials, 28(12), 1700905. [CrossRef] [Google Scholar]
  5. Basavapoornima, C., Kesavulu, C. R., Maheswari, T., Pecharapa, W., Depuru, S. R., & Jayasankar, C. K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  6. Rommelfanger, N. J., Keck, C. H., Chen, Y., & Hong, G. (2021). Learning from the brain’s architecture: bioinspired strategies towards implantable neural interfaces. Current opinion in biotechnology, 72, 8–12. [Google Scholar]
  7. Wang, X., Sun, X., Gan, D., Soubrier, M., Chiang, H. Y., Yan, L., … & Lu, X. (2022). Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue. Matter, 5(4), 1204–1223. [Google Scholar]
  8. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017, August). Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [CrossRef] [Google Scholar]
  9. Kumari, C. U., Murthy, A. S. D., Prasanna, B. L., Reddy, M. P. P., & Panigrahy, A. K. (2021). An automated detection of heart arrhythmias using machine learning technique: SVM. Materials Today: Proceedings, 45, 1393–1398. [CrossRef] [Google Scholar]
  10. Ziai, Y., Zargarian, S. S., Rinoldi, C., Nakielski, P., Sola, A., Lanzi, M., … & Pierini, F. (2023). Conducting polymer-based nanostructured materials for brain-machine interfaces. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, e1895. [Google Scholar]
  11. Tripathi, G. P., Agarwal, S., Awasthi, A., & Arun, V. (2022, August). Artificial Hip Prostheses Design and Its Evaluation by Using Ansys Under Static Loading Condition. In Biennial International Conference on Future Learning Aspects of Mechanical Engineering (pp. 815–828). Singapore: Springer Nature Singapore. [Google Scholar]
  12. Kim, G. H., Kim, K., Lee, E., An, T., Choi, W., Lim, G., & Shin, J. H. (2018). Recent progress on microelectrodes in neural interfaces. Materials, 11(10), 1995. [CrossRef] [PubMed] [Google Scholar]
  13. Reddy, K. S. P., Roopa, Y. M., Ln, K.R., & Nandan, N.S. (2020, July). IoT based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE [Google Scholar]
  14. Agrawal, R., Singh, S., Saxena, K. K., & Buddhi, D. (2023). A role of biomaterials in tissue engineering and drug encapsulation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221150740. [Google Scholar]
  15. Arun, V., Shukla, N. K., Singh, A. K., & Upadhyay, K. K. (2015, September). Design of all optical line selector based on SOA for data communication. In Proceedings of the Sixth International Conference on Computer and Communication Technology 2015 (pp. 281–285). [Google Scholar]
  16. SudhirSastry, Y. B., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [Google Scholar]
  17. Ramadugu, S., Ledella, S. R. K., Gaduturi, J. N. J., Pinninti, R. R., Sriram, V., & Saxena, K. K. (2023). Environmental life cycle assessment of an automobile component fabricated by additive and conventional manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–12. [Google Scholar]
  18. Fattahi, P., Yang, G., Kim, G., & Abidian, M. R. (2014). A review of organic and inorganic biomaterials for neural interfaces. Advanced materials, 26(12), 1846–1885. [CrossRef] [PubMed] [Google Scholar]
  19. Saxena, K. K., & Lal, A. (2012). Comparative Molecular Dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-wales and vacancy defects. Procedia Engineering, 38, 2347–2355. [CrossRef] [Google Scholar]
  20. Chari, A., Budhdeo, S., Sparks, R., Barone, D. G., Marcus, H. J., Pereira, E. A., & Tisdall, M. M. (2021). Brain-machine interfaces: the role of the neurosurgeon. World Neurosurgery, 146, 140–147. [Google Scholar]
  21. Ajith, J. B., Manimegalai, R., & Ilayaraja, V. (2020, February). An IoT based smart water quality monitoring system using cloud. In 2020 International conference on emerging trends in information technology and engineering (ic-ETITE) (pp. 1–7). IEEE. [Google Scholar]
  22. Swapna Sri, M. N., Anusha, P., Madhav, V. V., Saxena, K. K., Chaitanya, C. S., Haranath, R., & Singh, B. (2023). Influence of Cu particulates on a356mmc using frequency response function and damping ratio. Advances in Materials and Processing Technologies, 1–9. [CrossRef] [Google Scholar]
  23. Choi, J. R., Kim, S. M., Ryu, R. H., Kim, S. P., & Sohn, J. W. (2018). Implantable neural probes for brain- machine interfaces-current developments and future prospects. Experimental neurobiology, 27(6), 453. [CrossRef] [PubMed] [Google Scholar]
  24. Moxon, K. A., Hallman, S., Aslani, A., Kalkhoran, N. M., & Lelkes, P. I. (2007). Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. Journal of Biomaterials Science, Polymer Edition, 18(10), 1263–1281. [Google Scholar]
  25. Telagam, N., Kandasamy, N., & Nanjundan, M. (2017). Smart sensor network based high quality air pollution monitoring system using labview. International Journal of Online Engineering (iJOE), 13(08), 79–87. [CrossRef] [Google Scholar]
  26. Arora, G. S., & Saxena, K. K. (2023). A review study on the influence of hybridization on mechanical behaviour of hybrid Mg matrix composites through powder metallurgy. Materials Today: Proceedings. [Google Scholar]
  27. Musk, E. (2019). An integrated brain-machine interface platform with thousands of channels. Journal of medical Internet research, 21(10), e16194. [Google Scholar]
  28. Sanchez, J. C., & Principe, J. C. (2022). Brain-machine interface engineering. Springer Nature. [Google Scholar]
  29. Awasthi, A., Saxena, K. K., & Arun, V. (2020). Sustainability and survivability in manufacturing sector. In Modern Manufacturing Processes (pp. 205–219). Woodhead Publishing. [Google Scholar]
  30. Khuntia, P. K., & Manivannan, P. V. (2023). Review of Neural Interfaces: Means for Establishing Brain- Machine Communication. SN Computer Science, 4(5), 672. [Google Scholar]
  31. Korpi, A. G., Țălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., … & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8), 086463. [Google Scholar]
  32. Singh, B., Saxena, K. K., Dagwa, I. M., Singhal, P., & Malik, V. (2023). Optimization Of Machining Characteristics of Titanium-Based Biomaterials: Approach to Optimize Surface Integrity for Implants Applications. Surface Review and Letters, 2340008. [Google Scholar]
  33. Arun, V., Singh, A. K., Shukla, N. K., & Tripathi, D. K. (2016). Design and performance analysis of SOA- MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Optical and quantum electronics, 48, 1–15. [CrossRef] [Google Scholar]
  34. Lee, B., Liu, C. Y., & Apuzzo, M. L. (2013). A primer on brain-machine interfaces, concepts, and technology: a key element in the future of functional neurorestoration. World neurosurgery, 79(3-4), 457–471. [Google Scholar]
  35. Lebedev, M. A., & Nicolelis, M. A. (2006). Brain-machine interfaces: past, present and future. TRENDS in Neurosciences, 29(9), 536–546. [Google Scholar]
  36. Gupta, T. K., Budarapu, P. R., Chappidi, S. R., Yb, S.S., Paggi, M., & Bordas, S.P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  37. Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2022). Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–13. [Google Scholar]
  38. Chen, B., Zhang, B., Chen, C., Hu, J., Qi, J., He, T., … & Cheng, M. M. C. (2020). Penetrating glassy carbon neural electrode arrays for brain-machine interfaces. Biomedical Microdevices, 22, 1–10. [Google Scholar]
  39. Skousen, J. L., & Tresco, P. A. (2017). The biocompatibility of Intracortical microelectrode recording arrays for brain machine interfacing. In Neuroprosthetics: Theory and Practice (pp. 259–299). [Google Scholar]
  40. Balguri, P. K., Samuel, D. H., & Thumu, U. (2021). A review on mechanical properties of epoxy nanocomposites. Materials Today: Proceedings, 44, 346–355. [Google Scholar]
  41. Awasthi, A., Saxena, K. K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials Today: Proceedings, 44, 2069–2079. [CrossRef] [Google Scholar]
  42. Bettinger, C. J., Ecker, M., Kozai, T. D. Y., Malliaras, G. G., Meng, E., & Voit, W. (2020). Recent advances in neural interfaces—Materials chemistry to clinical translation. MRS bulletin, 45(8), 655–668. [Google Scholar]
  43. Qian, X., & Liao, C. (2023). Engineering Liquid Metal-Based Implantable Electrodes Toward Brain-Machine Interfaces. Health Sciences Review, 100118. [Google Scholar]
  44. Sadeghi, A., Afshari, E., Hashemi, M., Kaplan, D., & Mozafari, M. (2023). Brainy biomaterials: Latest advances in smart biomaterials to develop the next generation of neural interfaces. Current Opinion in Biomedical Engineering, 25, 100420. [Google Scholar]
  45. Saxena, K. K., Srivastava, V., & Sharma, K. (2012). Calculation of Fundamental Mechanical Properties of Single Walled Carbon Nanotube using Non-local Elasticity. Advanced Materials Research, 383, 3840–3844. [Google Scholar]
  46. Khuntia, P. K., & Manivannan, P. V. (2023). Review of Neural Interfaces: Means for Establishing Brain- Machine Communication. SN Computer Science, 4(5), 672. [Google Scholar]
  47. Ziai, Y., Zargarian, S. S., Rinoldi, C., Nakielski, P., Sola, A., Lanzi, M., … & Pierini, F. (2023). Conducting polymer-based nanostructured materials for brain-machine interfaces. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, e1895. [Google Scholar]
  48. Jha, P., Shaikshavali, G., Shankar, M. G., Ram, M. D. S., Bandhu, D., Saxena, K. K., & Agrawal, M.K. (2023). A hybrid ensemble learning model for evaluating the surface roughness of AZ91 alloy during the end milling operation. Surface Review and Letters, 2340001. [Google Scholar]
  49. Wu, N., Wan, S., Su, S., Huang, H., Dou, G., & Sun, L. (2021). Electrode materials for brain-machine interface: A review. InfoMat, 3(11), 1174–1194. [Google Scholar]
  50. Dhawan, V., & Cui, X. T. (2022). Carbohydrate based biomaterials for neural interface applications. Journal of Materials Chemistry B, 10(25), 4714–4740. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.