Open Access
Issue
E3S Web Conf.
Volume 526, 2024
Mineral Resources & Energy Congress (SEP 2024)
Article Number 01023
Number of page(s) 15
DOI https://doi.org/10.1051/e3sconf/202452601023
Published online 20 May 2024
  1. Stupnik, M.I., Kalinichenko, O.V., & Kalinichenko, V.O. (2012). Economic evaluation of risks of possible geomechanical violations of original ground in the fields of mines of Kryvyi Rih basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 126–130. [Google Scholar]
  2. Fedko, M.B., Muzyka, I.O., Pysmennyi, S.V. & Kalinichenko, O.V. (2019). Determination of drilling and blasting parameters considering the stress-strain state of rock ores. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (1), 37–41. https://doi.org/10.29202/nvngu/2019-1/20 [CrossRef] [Google Scholar]
  3. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040. https://doi.org/10.1088/1755-1315/970/1/012040 [CrossRef] [Google Scholar]
  4. Stupnik, M., Kalinichenko, V., Fedko, M., Pysmennyi, S., Kalinichenko, O., & Pochtarev, A. (2022). Methodology enhancement for determining parameters of room systems when mining uranium ore in the SE “SkhidGZK” underground mines, Ukraine. Mining of Mineral Deposits, 16(2), 33–41. https://doi.org/10.33271/mining16.02.033 [CrossRef] [Google Scholar]
  5. Peregudov, V., Hryhoriev, I., Joukov, S., & Hryhoriev, Y. (2020). Determination of the transfer step of the ore chute while mining the technogenic deposit of the bulk type. E3S Web of Conferences, (166), 02004. https://doi.org/10.1051/e3sconf/202016602004 [CrossRef] [EDP Sciences] [Google Scholar]
  6. Bazaluk, O, Petlovanyi, M, Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability Assessment of Hanging Wall Rocks during Underground Mining of Iron Ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858 [CrossRef] [Google Scholar]
  7. Petlovanyi, M.V., Zubko, S.A., Popovych, V.V., & Sai, K.S. (2020). Physicochemical mechanism of structure formation and strengthening in the backfill massif when filling underground cavities. Voprosy Khimii i Khimicheskoi Technologii, (6), 142–150. https://doi.org/10.32434/0321-4095-2020-133-6-142-150 [Google Scholar]
  8. Stupnik, M.I., Kalinichenko, O.V., & Kalinichenko, V.O. (2012). Technical and economic study of self-propelled machinery application expediency in mines of krivorozhsky basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 39–42. [Google Scholar]
  9. Pysmenniy, S., Shvager, N., Shepel, O., Kovbyk, K., & Dolgikh, O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, (166), 02006. https://doi.org/10.1051/e3sconf/202016602006. [CrossRef] [EDP Sciences] [Google Scholar]
  10. Stupnik, N.I., Fedko, M.B., Kolosov, V.A., & Pismennyy, S.V. (2014). Razrabotka rekomendatsiy po vyboru tipa krepleniya gornykh vyrabotok i sopryazheniy v uslovii uranovykh shakht GP “VOSTGOK”. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21–25. [Google Scholar]
  11. Bazaluk, O., Sadovenko, I., Zahrytsenko, A., Saik, P., Lozynskyi, V., & Dychkovskyi, R. (2021). Forecasting Underground Water Dynamics within the Technogenic Environment of a Mine Field: Case Study. Sustainability, 13(13), 7161. https://doi.org/10.3390/su13137161 [CrossRef] [Google Scholar]
  12. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.G., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36–42. [Google Scholar]
  13. Bazaluk, O., Lozynskyi, V., Falshtynskyi, V., Saik, P., Dychkovskyi, R., & Cabana, E. (2021). Experimental Studies of the Effect of Design and Technological Solutions on the Intensification of an Underground Coal Gasification Process. Energies, 14(14), 4369. https://doi.org/10.3390/en14144369 [CrossRef] [Google Scholar]
  14. Bolatova, A., & Kuttybayev, A. (2022). Use of mining and metallurgical waste as a backfill of worked-out spaces. Series of geology and technical sciences, 1(451), 33–38. https://doi.org/10.32014/2022.2518-170x.137 [CrossRef] [Google Scholar]
  15. Stupnik, М., Kalinichenko, V., Kalinichenko, O., Shepel, O., & Hryshchenko, M. (2023). Scientific and technical problems of transition from open pit to combined technologies for raw materials mining. IOP Conference Series: Earth and Environmental Science, 1254(1), 012070. http://dx.doi.org/10.1088/1755-1315/1254/1/012070 [CrossRef] [Google Scholar]
  16. Chepushtanova, T.A., Yulussov, S.B., Baigenzhenov, O.S., Khabiyev, A.T., & Merkibayev, Y.S., Mishra, B. (2024). Review of methods for processing ore vanadium-containing raw materials. Engineering Journal of Satbayev University, 146(1), 15–22. https://doi.org/10.51301/ejsu.2024.i1.03 [Google Scholar]
  17. Saik, P., Cherniaiev, O., Anisimov, O., Dychkovskyi, R., & Adamchuk, A. (2023). Mining of non-metallic mineral deposits in the context of Ukraine’s reconstruction in the war and post-war periods. Mining of Mineral Deposits, 17(4), 91–102. https://doi.org/10.33271/mining17.04.091 [CrossRef] [Google Scholar]
  18. Stupnik, М., Kalinichenko, V., Kalinichenko, O., & Pochtarev, A. (2021). Technological measures to enhance efficiency of mining ore from stopes applying self-propelled equipment. E3S Web of Conferences, (280), 08010. http://dx.doi.org/10.1051/e3sconf/202128008010 [CrossRef] [EDP Sciences] [Google Scholar]
  19. Morkun, V., Morkun, N., & Tron, V. (2015). Identification of control systems for ore-processing industry aggregates based on nonparametric kernel estimators. Metallurgical and Mining Industry, 7(1), 14–17. [Google Scholar]
  20. Kassymkanova, K.K., Istekova, S., Rysbekov, K., Amralinova, B., Kyrgizbayeva, G., Soltabayeva, S., & Dossetova, G. (2023). Improving a geophysical method to determine the boundaries of ore-bearing rocks considering certain tectonic disturbances. Mining of Mineral Deposits, 17(1), 17–27. https://doi.org/10.33271/mining17.01.017 [CrossRef] [Google Scholar]
  21. Khussan, B., Abdiev, A., Bitimbayev, M., Kuzmin, S., Issagulov, S., & Matayev, A. (2022). Substantiation and development of innovative container technology for rock mass lifting from deep open pits. Mining of Mineral Deposits, 16(4), 87–95. https://doi.org/10.33271/mining16.04.087 [CrossRef] [Google Scholar]
  22. Stupnik, М., Kalinichenko, V., Fedko, М., Kalinichenko, O., Hryshchenko, M. (2020). The study of the stress-strain state of the massif in mining uranium at VOSTGOK deposits. E3S Web of Conferences, (166), 03005. https://doi.org/10.1051/e3sconf/202016603005 [CrossRef] [EDP Sciences] [Google Scholar]
  23. Stupnik, М., & Kalinichenko, O. (2018). Investigation of muck drawing in blocks with trapezoid sills. E3S Web of Conferences, (60), 00021. https://doi.org/10.1051/e3sconf/20186000021 [CrossRef] [EDP Sciences] [Google Scholar]
  24. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 193–197. http://doi.org/10.1201/b11329-32 [Google Scholar]
  25. Tsoy, B.V., Myrzakhmetov, S.S., Bekbotaeva, A.A., & Yusupov, Kh.A. (2022). New geophysical logging techniques for practical problem solving at complex hydrogenetic uranium deposits. Gornyi Zhurnal, (7), 27–31. https://doi.org/10.17580/gzh.2022.07.04 [CrossRef] [Google Scholar]
  26. Morkun, V., & Tron, V. (2014). Automation of iron ore raw materials beneficiation with the operational recognition of its varieties in process streams. Metallurgical and Mining Industry, 6(6), 4–7. [Google Scholar]
  27. Kononenko, M., & Khomenko, O. (2021). New theory for the rock mass destruction by blasting. Mining of Mineral Deposits, 15(2), 111–123. https://doi.org/10.33271/mining15.02.111 [CrossRef] [Google Scholar]
  28. Stupnik, М., Fedko, М., Hryshchenko, М., Kalinichenko, O., & Kalinichenko, V. (2023). Study of Compensation Room Impacts on the Massif Stability and Mined Ore Mass Quality. Inzynieria Mineralna, (1), 129–135. [Google Scholar]
  29. Sdvyzhkova, O., Moldabayev, S., Bascetin, A., Babets, D., Kuldeyev, E., Sultanbekova, Zh., Amankulov, M., & Issakov, B. (2022). Probabilistic assessment of slope stability at ore mining with steep layers in deep open pits. Mining of Mineral Deposits, 16(4), 11–18. https://doi.org/10.33271/mining16.04.011 [CrossRef] [Google Scholar]
  30. Wang, J., Apel, D.B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2022). Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1671–1696. https://doi.org/10.1016/j.jrmge.2022.01.009 [CrossRef] [Google Scholar]
  31. Rysbekov, K., Bitimbayev, M., Akhmetkanov, D., Yelemessov, K., Barmenshinova, M., Toktarov, A., & Baskanbayeva, D. (2022). Substantiation of mining systems for steeply dipping low-thickness ore bodies with controlled continuous stope extraction. Mining of Mineral Deposits, 16(2), 64–72. https://doi.org/10.33271/mining16.02.064 [CrossRef] [Google Scholar]
  32. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 11–18. https://doi.org/10.29202/nvngu/2019-6/2 [Google Scholar]
  33. Stupnik, М., Oliinyk, Т., Pochtarev, A., Kalinichenko, O., & Kalinichenko, V. (2023). Enhancement of the quality of marketable iron ore products of Kryvyi Rih iron ore basin. IOP Conference Series: Earth and Environmental Science, 1156(1), 012031. https://doi.org/10.1088/1755-1315/1156/1/012031 [CrossRef] [Google Scholar]
  34. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, (10), 852591. https://doi.org/10.3389/fenvs.2022.852591 [CrossRef] [Google Scholar]
  35. Petlovanyi, M., Ruskykh, V., Zubko, S., & Medianyk, V. (2020). Dependence of the mined ores quality on the geological structure and properties of the hanging wall rocks. E3S Web of Conferences, (201), 01027. https://doi.org/10.1051/e3sconf/202020101027 [CrossRef] [EDP Sciences] [Google Scholar]
  36. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). Modeling of ultrasonic waves propagation in inhomogeneous medium using fibered spaces method (k-space). Metallurgical and Mining Industry, 6(2), 43–48. [Google Scholar]
  37. Bazaluk, O., Anisimov, O., Saik, P, Lozynskyi, V., Akimov, O., & Hrytsenko, L. (2023). Determining the Safe Distance for Mining Equipment Operation When Forming an Internal Dump in a Deep Open Pit. Sustainability, 15(7), 5912. https://doi.org/10.3390/su15075912 [CrossRef] [Google Scholar]
  38. Khomenko, O., Kononenko, M., Kovalenko, I., & Astafiev, D. (2018). Self-regulating roof-bolting with the rock pressure energy use. E3S Web of Conferences, (60), 00009. http://doi.org/10.1051/e3sconf/20186000009 [CrossRef] [EDP Sciences] [Google Scholar]
  39. Petlovanyi, M., & Mamaikin, О. (2019). Assessment of an expediency of binder material mechanical activation in cemented rockfill. ARPN Journal of Engineering and Applied Sciences, 14(20), 3492–3503. [Google Scholar]
  40. Khomenko, O., Kononenko, M., & Lyashenko, V. (2018). Safety Improving of Mine Preparation Works at the Ore Mines. Occupational Safety in Industry, (5), 53–59. http://doi.org/10.24000/0409-2961-2018-5-53-59 [CrossRef] [Google Scholar]
  41. Morkun, V., Morkun, N., & Pikilnyak, A. (2014). The adaptive control for intensity of ultrasonic influence on iron ore pulp. Metallurgical and Mining Industry, 6(6), 8–11. [Google Scholar]
  42. Stupnik, N., Kalinichenko, V., Pismennij, S., & Kalinichenko, Е. (2015). Features of underlying levels opening at “ArsellorMittal Kryvyic Rih” underground mine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 39–44. [CrossRef] [Google Scholar]
  43. Mineralni resursy Ukrainy. (2018). Kyiv, Ukraina: Derzhavne naukovo-vyrobnyche pidpryiemstvo “Derzhavnyi syformaciinyi heolohichnyi fond Ukrainy”. [Google Scholar]
  44. Pivnyak, G.G., & Shashenko, O.M. (2015). Innovations and safety for coal mines in Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 118–121. [Google Scholar]
  45. Salieiev, I. (2024). Organization of processes for complex mining and processing of mineral raw materials from coal mines in the context of the concept of sustainable development. Mining of Mineral Deposits, 18(1), 54–66. https://doi.org/10.33271/mining18.01.054 [CrossRef] [Google Scholar]
  46. Chernokur, V.R., Shkrebko, G.S., & Shelegeda, V.I. (1992). Dobycha rud s podetazhnym obrusheniem. Nedra, 271 s. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.