Open Access
Issue
E3S Web of Conf.
Volume 544, 2024
8th International Symposium on Deformation Characteristics of Geomaterials (IS-Porto 2023)
Article Number 15001
Number of page(s) 8
Section Behaviour, Characterization and Modelling of Various Geomaterials and Interfaces - Frozen Soils
DOI https://doi.org/10.1051/e3sconf/202454415001
Published online 02 July 2024
  1. Arenson, L., Hoelzle, M. & Springman, S., 2002. Borehole deformation measurements and internal structure of some rock glacier in Switzerland. Permafrost and periglacial processes, Volume 13, pp. 117–135. https://doi.org/10.1002/ppp.414 [CrossRef] [Google Scholar]
  2. Arenson, L. & Springman, S., 2005. Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 °C. Canadian Geotechnical Journal, pp. 431–442. https://doi.org/10.1139/t04-109 [Google Scholar]
  3. Bardou, E., Favre-Bulle, G., Ornstein, P. & Rouiller, J.-D., 2011. Influence of the connectivity with permafrost on the debris-flow triggering in high-alpine environment. Engineering Geology and the Environment, Volume 10, pp. 13–21.https://doi.org/10.4408/IJEGE.2011-03.B-002 [Google Scholar]
  4. Blikra, L. H. & Christiansen, H. H., 2014. A filed-based model of permafrost-controlled rockslide deformation in northern Norway. Geomorphology, Volume 208, pp. 34–49. https://doi.org/10.1016/j.geomorph.2013.11.014 [CrossRef] [Google Scholar]
  5. Chamberlain, E. & Gow, A., 1979. Effect of Freezing and Thawing on the Permeability and Structure of Soils. Developments in Geotechnical Engineering, Volume 26, pp. 73–92. https://doi.org/10.1016/B978-0-444-41782-4.50012-9 [CrossRef] [Google Scholar]
  6. Damm, B. & Felderer, A., 2013. Impact of atmospheric warming on permafrost degradation and debris flow initiation - a case study from the eatern European Alps. Quaternary Science journal, 62(2), pp. 136 - 149. https://doi.org/10.3285/eg.62.2.05 [Google Scholar]
  7. Ding, Y. et al., 2019. Global warming weakening the inherent stability of glaciers and permafrost. Science bulletin, Volume 64, pp. 245 - 253. https://doi.org/10.1016/j.scib.2018.12.028 [PubMed] [Google Scholar]
  8. Dysli, 1993. Where does the water go during ice lenses thaw?. Anchorage, s.n., pp. 45–50. [Google Scholar]
  9. Etzelmüller, B., Berthling, I. & Sollid, J. L., 2003. Aspects and concepts on the geomorphological significance of Holocene permafrost in southern Norway. Geomorphology, Volume 52, pp. 87–104. https://doi.org/10.1016/S0169-555X(02)00250-7 [CrossRef] [Google Scholar]
  10. Farbrot, H., Isaksen, K., Etzelmüller, B. & Gisnas, K., 2013. Ground thermal regime and permafrost distribution under a changing climate in Northern Norway. Permafrost and periglacial processes, Volume 24, pp. 20–38. https://doi.org/10.1002/ppp.1763 [CrossRef] [Google Scholar]
  11. Frauenfelder, R., Isaksen, K., Matthew, J. L. & Noetzli, J., 2018. Ground thermal and geomechanical conditions in a permafrost-affected high-latitude rock avalanche site (Polvartinden, northern Norway). The cryosphere, Volume 12, pp. 1531–1550. https://doi.org/10.5194/tc-12-1531-2018 [CrossRef] [Google Scholar]
  12. Guo, D., Wang, H. & Li, D., 2012. A projection of permafrost degradation on the Tibetan Plateau during the 21st century. Journal of Geophysical research, Volume 117. https://doi.org/10.1029/2011JD016545 [Google Scholar]
  13. Haeberli, W., 1992. Construction, Environmental problems and natural hazards in periglacial mountain belts. Permafrost and periglacial processes, Volume 3, pp. 111 - 124. https://doi.org/10.1002/ppp.3430030208 [Google Scholar]
  14. Hilger, P. et al., 2021. Permafrost as a first order control on long-term rock.slope deformation in (Sub-)Arctic Norway. Quaternary Sciences Reviews, Volume 251. https://doi.org/10.1016/j.quascirev.2020.106718 [Google Scholar]
  15. Hipp, T., Etzelmüller, B., Farbrot, H. & Schuler, T. V., 2011. Modelling the temperature evolution of permafrost and seasonal frost in southern Norway during the 20th and 21st century. The cryosphere discussions, Volume 5, pp. 811 - 854 https://doi.org/10.5194/tcd-5-811-2011 [Google Scholar]
  16. Isaksen, K. et al., 2011. Degrading mountain permafrost in Southern Norway : spatial and temporal varaibility of mean ground temperatures, 1999-2009. Permafrost and Periglacial Processes, Volume 22, pp. 361–377. https://doi.org/10.1002/ppp.728 [CrossRef] [Google Scholar]
  17. Isaksen, K. et al., 2002. Mountain permafrost distribution in Dovrefjell and Jorunheimen, southern Norway, based on BTS and DC resistivity tomography data. Norwegian journal geography, 56(2), pp. 122–136. https://doi.org/10.1080/002919502760056459 [Google Scholar]
  18. Isaksen, K., Holmlund, P., Sollid, J. L. & Harris, C., 2001. Three deep alpine-permafrost boreholes in Svalbard and Scandinavia. Permafrost and periglacial processes, Volume 12, pp. 13–25. https://doi.org/10.1002/ppp.380 [CrossRef] [Google Scholar]
  19. Lyon, C. et al., 2022. Climate change research and action must look beyond 2100. Global Change Biology, Volume 28, pp. 349–361. https://doi.org/10.1111/gcb.15871 [CrossRef] [PubMed] [Google Scholar]
  20. Matthews, J. A. et al., 2018. Small rock-slope failures conditioned by Holocene permafrost degradation: a new approach and conceptual model based on Schmidt-hammer exposure-age dating, Jotunheimen, southern Norway. An international journal of quaternary research, Volume 47, pp. 1144–1169. https://doi.org/10.1111/bor.12336 [Google Scholar]
  21. Myhra, K. S., Westermann, S. & Etzemüller, B., 2017. Modelled distribution and temporal evolution of permafrost in steep rock walls along a latitudianal transect in Norway by CryoGrid 2D. Permafrost and Periglacial Processes, Volume 28, pp. 172–182. https://doi.org/10.1002/ppp.1884 [CrossRef] [Google Scholar]
  22. Perov, V., Chernomorets, S. & Budarina, O., 2017. Debris flow hazards for mountain regions of Russia: regional features and key events. Springer, pp. 199 - 235. https://doi.org/10.1007/s11069-017-2841-3 [Google Scholar]
  23. Prina Howald, E. & Torche, J., 2020. Global warming and loss of bearing capacity of permafrost : an experimental study on the effects of freezing/thawing cycles on a silty soil. Global Journal of Earth Science and Engineering, Issue 7, pp. 1–21. [Google Scholar]
  24. Saemundsson, P. et al., 2018. The triggering factors of the Moafellshyrna debris slide in northern Iceland : intense precipitation, earthquake activity and thawing of mountain permafrost. Science of the total environment, Volume 621, pp. 1163 - 1175. https://doi.org/10.1016/j.scitotenv.2017.10.111 [CrossRef] [Google Scholar]
  25. Sattler, K., Keiler, M., Zischg, A. & Schrott, L., 2011. On the connection between debris flow activity and permafrost degradation: a case study from the schnalstal, South Alps, Italy. Permafrost and periglacial precesses, Volume 22, pp. 254 - 265.https://doi.org/10.1002/ppp.730 [Google Scholar]
  26. Stoffel, M., Bollschweiler, M. & Beniston, M., 2011. Rainfall characteristics for periglacial debris flows in the Swiss Alps: past incidences - potential future evolutions. Climatic Change, Volume 105, pp. 263 - 280. https://doi.org/10.1007/s10584-011-0036-6 [CrossRef] [Google Scholar]
  27. Torche, J. & Prina Howald, E., 2017. Influence of the climate change on the evolution of soil bearing capacity : an experimental study on the effects of freezing/thawing cycles. IX Simposio Nacional sobre Taludes y Laderas Inestables, pp. 295 - 306. [Google Scholar]
  28. Zhang, Y., Chen, W. & Riseborough, D. W., 2008. Transient projections of permafrost distribution in Canada during 21st century under scenarios of climate change. Global and Planetary Change, Volume 60, pp. 443- 456. https://doi.org/10.1016/j.gloplacha.2007.05.003 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.