Open Access
Issue
E3S Web Conf.
Volume 567, 2024
8th International Conference “Physical & Chemical Geotechnologies” 2024
Article Number 01007
Number of page(s) 15
DOI https://doi.org/10.1051/e3sconf/202456701007
Published online 09 September 2024
  1. Dyczko, A. (2023). Production management system in a modern coal and coke company based on the demand and quality of the exploited raw material in the aspect of building a service-oriented architecture. Journal of Sustainable Mining, 22(1), 2–19. https://doi.org/10.46873/2300-3960.1371 [CrossRef] [Google Scholar]
  2. Marciniak, B. (2016). Narzędzia wspomagające proces projektowania obudowy wyrobisk podziemnych w warunkach kopalni “Bogdanka”. Wiadomości Górnicze, 67(2), 108–114. [Google Scholar]
  3. Gontaszewska-Piekarz, A., & Mrówczyńska, M. (2018). The application of airborne laser scanning for identifying old lignite workings – case study: the mine “Borussia” near Ośno Lubuskie (Western Poland). E3S Web of Conferences, (36), 02002. https://doi.org/10.1051/e3sconf/20183602002 [CrossRef] [EDP Sciences] [Google Scholar]
  4. Sosnowski, P., Dyczko, A., & Kamiński, P. (2024). Quality management in a 3D geological model – reliability of predicted hard coal quality parameters. E3S Web of Conferences, (526), 01003. https://doi.org/10.1051/e3sconf/202452601003 [CrossRef] [EDP Sciences] [Google Scholar]
  5. Shaik, K. M., Babu, Y.S., Gundabatini, S.G., & Ramachandran, V. (2023). Prospects of AI and ML in Laser-Based Manufacturing Technologies. Laser-Based Technologies for Sustainable Manufacturing, 85–106. https://doi.org/10.1201/9781003402398-5 [CrossRef] [Google Scholar]
  6. Polyanska, A., Pazynich, Y., Mykhailyshyn, K., Babets, D. & Toś, P. (2024). Aspects of energy efficiency management for rational energy resource utilization. Rudarsko-Geološko-Naftni Zbornik, 39(3), 13–26. https://doi.org/10.17794/rgn.2024.3.2 [CrossRef] [Google Scholar]
  7. Krot, K., & Lewicka, D. (2011). Human side of innovation-individual and organisational environment-related aspects: the case of IBM. International Journal of Innovation and Learning, 9(4), 352. https://doi.org/10.1504/ijil.2011.040535 [CrossRef] [Google Scholar]
  8. Lewinska, P., Matula, R., & Dyczko, A. (2017). Integration of thermal digital 3D model and a MASW (Multichannel Analysis of Surface Wave) as a means of improving monitoring of spoil tip stability. 2017 Baltic Geodetic Congress (BGC Geomatics). https://doi.org/10.1109/bgc.geomatics.2017.29 [Google Scholar]
  9. Kononenko, M., Khomenko, O., Cabana, E., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and +blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(v28/i3), 655–667. https://doi.org/10.46544/ams.v28i3.10 [CrossRef] [Google Scholar]
  10. Kononenko, M., Khomenko, O., Kosenko, A., Myronova, I., Bash, V. & Pazynich, Yu. (2024). Raises advance using emulsion explosives. E3S Web of Conferences, (526), 01010. https://doi.org/10.1051/e3sconf/202452601010 [CrossRef] [EDP Sciences] [Google Scholar]
  11. Kassymkanova, K.K., Rysbekov, K.B., Nurpeissova, M.B., Kyrgizbayeva, G.M., Amralinova, B.B., Soltabaeva, S.T., Salkynov, A., & Jangulova, G. (2023). Geophysical studies of rock distortion in mining operations in complex geological conditions. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (48), 57–62. https://doi.org/10.5194/isprs-archives-XLVIII-5-W2-2023-57-2023 [CrossRef] [Google Scholar]
  12. Bazaluk, O., Rysbekov, K., Nurpeisova, M., Lozynskyi, V., Kyrgizbayeva, G., & Turumbetov, T. (2022). Integrated monitoring for the rock mass state during large-scale subsoil development. Frontiers in Environmental Science, (10), 852591. https://doi.org/10.3389/fenvs.2022.852591 [CrossRef] [Google Scholar]
  13. Kassymkanova, K.K., Istekova, S., Rysbekov, K., Amralinova, B., Kyrgizbayeva, G., Soltabayeva, S., & Dossetova, G. (2023). Improving a geophysical method to determine the boundaries of orebearing rocks considering certain tectonic disturbances. Mining of Mineral Deposits, 17(1), 17–27. https://doi.org/10.33271/mining17.01.017 [CrossRef] [Google Scholar]
  14. Janicka, J., Błaszczak-Bąk, W., & Pawłowski, K. (2018). Terrestrial laser scanning in forest inventory based on OptD optimization method. E3S Web of Conferences, (63), 00009. https://doi.org/10.1051/e3sconf/20186300009 [CrossRef] [EDP Sciences] [Google Scholar]
  15. Dyczko, A., Galica, D., & Sypniowski, S. (2012). Deposit model as a first step in mining production scheduling. Geomechanical Processes during Underground Mining – Proceedings of the School of Underground Mining, 231–247. https://doi.org/10.1201/b13157-39 [Google Scholar]
  16. Ni, J., & Zhang, C. (2006). Mining better technical trading strategies with genetic algorithms. 2006 International Workshop on Integrating AI and Data Mining, 26–33. https://doi.org/10.1109/aidm.2006.12 [CrossRef] [Google Scholar]
  17. Wang, J., Apel, D.B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2022). Analysis of the damage mechanism of strainbursts by a global-local modeling approach. Journal of Rock Mechanics and Geotechnical Engineering, 14(6), 1671–1696. https://doi.org/10.1016/j.jrmge.2022.01.009 [CrossRef] [Google Scholar]
  18. Dychkovskyi, R., Saik, P., Sala, D., & Cabana, E.C. (2024). The current state of the non-ore mineral deposits mining in the concept of the Ukraine reconstruction in the post-war period. Mineral Economics, 1–11. https://doi.org/10.1007/s13563-024-00436-z [Google Scholar]
  19. Polyanska, A., Pazynich, Y., Poplavska, Z., Kashchenko, Y., Psiuk, V., & Martynets, V. (2024). Conditions of remote work to ensure mobility in project activity. Lecture Notes in Mechanical Engineering, 151–166. https://doi.org/10.1007/978-3-031-56474-1_12 [CrossRef] [Google Scholar]
  20. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., & Cabana, E. (2019). Some aspects of modern vision for geoenergy usage. E3S Web of Conferences, (123), 01010. https://doi.org/10.1051/e3sconf/201912301010 [CrossRef] [EDP Sciences] [Google Scholar]
  21. Lewicka, B., & Lewicka, D. (2019). Environmental risk management in the context of environmental management systems for agriculture based on the ISO 14001:2015 standard. Acta Innovations, (33), 63–72. https://doi.org/10.32933/actainnovations.33.6 [CrossRef] [Google Scholar]
  22. Richert, M., & Dudek, M. (2023). Selected problems of the automotive industry – material and economic risk. Journal of Risk and Financial Management, 16(8), 368. https://doi.org/10.3390/jrfm16080368 [CrossRef] [Google Scholar]
  23. Dyczko, A. (2023). The geological modelling of deposits, production designing and scheduling in the JSW SA Mining Group. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 39(1), 35–62. https://doi.org/10.24425/gsm.2023.144628 [Google Scholar]
  24. Dyczko, A. (2023). Construction of a heuristic architecture of a production line management system in the JSW SA Mining Group in the context of output stabiliza-tion, quality improvement and the maximization of economic effects. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 37(4), 219–238. https://doi.org/10.24425/gsm.2021.139746 [Google Scholar]
  25. Rotkegel, M., Szot, Ł., Kapała, M., & Dras, M. (2017). New construction of rail for underground suspended monorails as an example of typification for deep mining transport in the mines of JSW SA. Transportation Overview – Przeglad Komunikacyjny, 2017(5), 29–39. https://doi.org/10.35117/a_eng_17_05_04 [CrossRef] [Google Scholar]
  26. Dyczko, A. (2023). Real-time forecasting of key coking coal quality parameters using neural networks and artificial intelligence. Rudarsko-Geološko-Naftni Zbornik, 38(3), 105–117. https://doi.org/10.17794/rgn.2023.3.9 [CrossRef] [Google Scholar]
  27. Wang, J., Apel, D.B., Dyczko, A., Walentek, A., Prusek, S., Xu, H., & Wei, C. (2021). Investigation of the rockburst mechanism of driving roadways in close-distance coal seam mining using numerical modeling method. Mining, Metallurgy and Exploration, 38(5), 1899–1921. https://doi.org/10.1007/s42461-021-00471-2 [CrossRef] [Google Scholar]
  28. Krawczyk, A. (2023). Mining Geomatics. ISPRS International Journal of Geo-Information, 12(7), 278. https://doi.org/10.3390/ijgi12070278 [CrossRef] [Google Scholar]
  29. Kosydor, P., Warchala, E., Krawczyk, A., & Piórkowski, A. (2020). Determinants of large-scale spatial data processing in Polish mining. AIP Conference Proceedings. https://doi.org/10.1063/5.0000335 [PubMed] [Google Scholar]
  30. Bonacci, O., & Andrić, I. (2014). Morphological study of Red lake in Dinaric karst based on terrestrial laser scanning and sonar system. Acta Carsologica, 43(2-3). https://doi.org/10.3986/ac.v43i2.712 [CrossRef] [Google Scholar]
  31. Lewińska, P., & Dyczko, A. (2016). Thermal digital terrain model of a coal spoil tip – a way of improving monitoring and early diagnostics of potential spontaneous combustion areas. Journal of Ecological Engineering, 17(4), 170–179. https://doi.org/10.12911/22998993/64605 [CrossRef] [Google Scholar]
  32. Koś, M., Frycz, T., & Kaczmarzewski, S. (2024). Examples of using laser scanning as a support for traditional measuring methods in hard coal mining. E3S Web of Conferences, (526), 01025. https://doi.org/10.1051/e3sconf/202452601025 [Google Scholar]
  33. Muhojoki, J., Hakala, T., Kukko, A., Kaartinen, H., & Hyyppä, J. (2024). Comparing positioning accuracy of mobile laser scanning systems under a forest canopy. Science of Remote Sensing, (9), 100121. https://doi.org/10.1016/j.srs.2024.100121 [CrossRef] [Google Scholar]
  34. Dudek, M., & Pawlewski, P. (2010). Implementation of network oriented manufacturing structures. Lecture Notes in Computer Science, 282–291. https://doi.org/10.1007/978-3-642-13541-5_29 [CrossRef] [Google Scholar]
  35. Yuan, G., Nikkel, P., Thangaraj, C., Chen, T.W., Pownall, R., Iguchi, A., & Lear, K.L. (2006). Optical characterization of a leaky-mode polysilicon photodetector using near-field scanning optical microscopy. 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference, 1–2. https://doi.org/10.1109/cleo.2006.4627961 [Google Scholar]
  36. Khomenko, O., Rudakov, D., Lkhagva, T., Sala, D., Buketov, V., & Dychkovskyi, R. (2023). Managing the horizon-oriented in-situ leaching for the uranium deposits of Mongolia. Rudarsko-Geološko-Naftni Zbornik, 38(5), 49–60. https://doi.org/10.17794/rgn.2023.5.5 [CrossRef] [Google Scholar]
  37. Richert, M., & Dudek, M. (2023). Risk mapping: ranking and analysis of selected, key risk in supply chains. Journal of Risk and Financial Management, 16(2), 71. https://doi.org/10.3390/jrfm16020071 [CrossRef] [Google Scholar]
  38. Malik, R., & Pande, S. (2022). Sentimental snalysis with web engineering and web mining. IoT and AI Technologies for Sustainable Living, 197–217. https://doi.org/10.1201/9781003051022-12 [CrossRef] [Google Scholar]
  39. Sala, D., & Bieda, B. (2022). Stochastic approach based on Monte Carlo (MC) simulation used for Life Cycle Inventory (LCI) uncertainty analysis in Rare Earth Elements (REEs) recovery. E3S Web of Conferences, (349), 01013. https://doi.org/10.1051/e3sconf/202234901013 [CrossRef] [EDP Sciences] [Google Scholar]
  40. Bieda, B., Skalna, I., Gaweł, B., Grzesik, K., Henclik, A., & Sala, D. (2017). Life cycle inventory processes of the integrated steel plant (ISP) in Krakow, Poland-continuous casting of steel (CCS): a case study. The International Journal of Life Cycle Assessment, 23(6), 1274–1285. https://doi.org/10.1007/s11367-017-1365-0 [Google Scholar]
  41. Antanavičiūtė, U., Obuchovski, R., Paršeliūnas, E.K., Popovas, M.G.D., & Šlikas, D. (2013). Some issues regarding the calibration of the terrestrial laser scanner leica scanstation C10. Geodesy and Cartography, 39(3), 138–143. https://doi.org/10.3846/20296991.2013.840356 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.