Open Access
Issue
E3S Web Conf.
Volume 601, 2025
The 3rd International Conference on Energy and Green Computing (ICEGC’2024)
Article Number 00012
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202560100012
Published online 16 January 2025
  1. U. Al-Mulali, J. Y. Lee, A. M. Hakim, L. Sheau-Ting, Examining the link between energy consumption, carbon dioxide emission, and economic growth in Latin America and the Caribbean. Renew and Susta Energy Rev 26, 42–48 (2013). https://doi.org/10.1016/j.rser.2013.05.041 [CrossRef] [Google Scholar]
  2. F. Martins, C. Felgueiras, M. Smitkova, N. Caetano, Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 12(6), 964 (2019). https://www.mdpi.com/1996-1073/12/6/964 [CrossRef] [Google Scholar]
  3. M. Aliyu, K. Iwabuchi, T. Itoh, Upgrading the fuel properties of hydrochar by co-hydrothermal carbonisation of dairy manure and Japanese larch (Larix kaempferi): product characterisation, thermal behaviour, kinetics and thermodynamic properties. Biomass Conversion and Bioref, 1, 3, 11917–11932, (2023). https://link.springer.com/article/10.1007/s13399-021-02045-0 [CrossRef] [Google Scholar]
  4. M. Aliyu, I. S. Mohammed, H. A. Lawal, S. M. Dauda,, A. A. Balami, M. Usman, L. Abdullahi, M. Abubakar, B. Ndagi, Effect of Compaction Pressure and Biomass Type (Rice Husk and Sawdust) on Some Physical and Combustion Properties of Briquettes. ARID Zone J. of Engineering, Technology and Environment 17(1), 61–70 (2021). Effect of Compaction Pressure and Biomass Type (Rice Husk and Sawdust) on Some Physical and Combustion Properties of Briquettes. ARID Zone J. of Engineering, Technology and Environment 17(1), 61–70 (2021). [Google Scholar]
  5. M. Aliyu, I. S. Mohammed, M. Usman, S. M. Dauda, I. J. Igbetua, Production of composite solid fuel using orange peels and corn cobs for energy supply. CIGR International 22(2), 133–144 (2020). https://cigrjournal.org/index.php/Ejounral/article/view/5640. [Google Scholar]
  6. Q. Lang, B. Zhang, Z. Liu, Z. Chen, Y. Xia, D. Li, J. Ma, C. Gai, Co-hydrothermal carbonization of corn stalk and swine manure: Combustion behavior of hydrochar by thermogravimetric analysis. Bioresource Techno, 271, 75–83 (2019). https://doi.org/10.1016/j.biortech.2018.09.100. [CrossRef] [Google Scholar]
  7. R. V. P. Antero, A. C. F. Alves, S. B. de Oliveira, S. A. Ojala, S. S. Brum, Challenges and alternatives for the adequacy of hydrothermal carbonization of lignocellulosic biomass in cleaner production systems: A review. J. of Cleaner Production 252, 119899 (2020). https://doi.org/10.1016/j.jclepro.2019.119899. [CrossRef] [Google Scholar]
  8. H. S. Kambo, A. Dutta, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Revs 45, 359–378 (2015). https://doi.org/10.1016/j.rser.2015.01.050. [CrossRef] [Google Scholar]
  9. G. Gasco, J. Paz-Ferreiro, M. L. Alvarez, A. Saa, A. Méndez, Biochars and hydrochars prepared by pyrolysis and hydrothermal carbonisation of pig manure. Waste Manage 79, 395–403 (2018). https://doi.org/10.1016/j.wasman.2018.08.015. [CrossRef] [Google Scholar]
  10. X. Zhang, L. Zhang, A. Li, Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrientrich hydrochar production: Synergistic effects and products characterization. J. of Environmental Management 201, 52–62 (2017). https://doi.org/10.1016/j.jenvman.2017.06.018. [CrossRef] [Google Scholar]
  11. J. Fang, L. Zhan, Y. S. Ok, B. Gao, Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. of Industrial and Engineering Chemistry 57, 15–21 (2018). https://doi.org/10.1016/j.jiec.2017.08.026. [CrossRef] [Google Scholar]
  12. A. Funke, F. Ziegler, Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Wiley Online Library 4(2), 160–177 (2010). https://doi.org/10.1002/bbb.198. [Google Scholar]
  13. M. Heidari, A. Dutta, B. Acharya, S. Mahmud, A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion. J. of the Energy Institute 92(6), 1779–1799 (2019). https://doi.org/10.1016/j.joei.2018.12.003. [CrossRef] [Google Scholar]
  14. C. I. Aragón-Briceño, O. Grasham, A. B. Ross, V. Dupont, M. A. Camargo-Valero, Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renewable Energy 157, 959–973 (2020). https://doi.org/10.1016/j.renene.2020.05.021. [CrossRef] [Google Scholar]
  15. E. Sabio, A. Álvarez-Murillo, S. Román, B. Ledesma, Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Management 47, 122–132 (2016). https://doi.org/10.1016/j.wasman.2015.04.016. [CrossRef] [Google Scholar]
  16. E., Sermyagina, J. Saari, J. Kaikko, E. Vakkilainen, Hydrothermal carbonization of coniferous biomass: Effect of process parameters on mass and energy yields. J. of Analytical and Applied Pyrolysis 113, 551–556 (2015). https://doi.org/10.1016/j.jaap.2015.03.012. [CrossRef] [Google Scholar]
  17. M. Volpe, L. Fiori, From olive waste to solid biofuel through hydrothermal carbonisation: The role of temperature and solid load on secondary char formation and hydrochar energy properties. J. of Analytical and Applied Pyrolysis 124, 63–72 (2017). https://doi.org/10.1016/j.jaap.2017.02.022. [CrossRef] [Google Scholar]
  18. T. Itoh, K. Iwabuchi, N. Maemoku, I. Sasaki, K. Taniguro, A new torrefaction system employing spontaneous self-heating of livestock manure under elevated pressure. Waste Management 85, 66–72 (2019). https://doi.org/10.1016/j.wasman.2018.12.018. [CrossRef] [Google Scholar]
  19. C. A. Cuvilas, E. Kantarelis, W. Yang, The impact of a mild sub-critical hydrothermal carbonization pretreatment on Umbila wood. A mass and energy balance perspective. Energies, 8(3), 2165–2175 (2015). https://doi.org/10.3390/en8032165. [CrossRef] [Google Scholar]
  20. K. Nakason, B. Panyapinyopol, V. Kanokkantapong, N. Viriya-empikul, W. Kraithong, P. Pavasant, Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction. J. of the Energy Institute 91(5), 786–796 (2018). https://doi.org/10.1016/j.joei.2017.05.002. [CrossRef] [Google Scholar]
  21. M. T. Reza, W. Yan, M. H. Uddin, J. G. Lynam, S. K. Hoekman, C. J. Coronella, V. R. Vásquez, Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresource Technology 139, 161–169 (2013). https://doi.org/10.1016/j.biortech.2013.04.028. [CrossRef] [PubMed] [Google Scholar]
  22. J. Stemann, A. Putschew, F. Ziegler, Hydrothermal carbonization: Process water characterization and effects of water recirculation. Biores Tech 143, 139–146 (2013). https://doi.org/10.1016/j.biortech.2013.05.098. [CrossRef] [Google Scholar]
  23. Y. Gao, Y. Liu, G. Zhu, J. Xu, H. Xu, Q. Yuan, Y. Zhu, J. Sarma, Y. Wang, J. Wang, L. Ji, Microwave-assisted hydrothermal carbonization of dairy manure: Chemical and structural properties of the products. Energy, 165, 662–672 (2018). https://doi.org/10.1016/j.energy.2018.09.185. [CrossRef] [Google Scholar]
  24. S. A. Shafie, K. A. Al-attab, Z. A. Zainal, Effect of hydrothermal and vapothermal carbonization of wet biomass waste on bound moisture removal and combustion characteristics. Applied Thermal Engineering 139, 187–195 (2018). https://doi.org/10.1016/j.applthermaleng.2018.02.073. [CrossRef] [Google Scholar]
  25. K. H. Yeoh, S. A. Shafie, K. A. Al-attab, Z. A. Zainal, Upgrading agricultural wastes using three different carbonization methods: Thermal, hydrothermal and vapothermal. Bioresource Technology 265, 365–371 (2018). https://doi.org/10.1016/j.biortech.2018.06.024. [CrossRef] [PubMed] [Google Scholar]
  26. H. S. Kambo, J. Minaret, A. Dutta, Process Water from the Hydrothermal Carbonization of Biomass: A Waste or a Valuable Product? Waste and Biomass Valorization 9(7), 1181–1189 (2018). https://link.springer.com/article/10.1007/s12649-017-9914-0. [CrossRef] [Google Scholar]
  27. Y. Lin, X. Ma, X. Peng, S. Hu, Z. Yu, S. Fang, Effect of hydrothermal carbonization temperature on combustion behavior of hydrochar fuel from paper sludge. Applied Thermal Engineering 91, 574–582 (2015). https://doi.org/10.1016/j.applthermaleng.2015.08.064. [CrossRef] [Google Scholar]
  28. X. Zheng, W. Chen, Z. Ying, Z. Jiang, Y. Ye, B. Wang, Y. Feng, B. Dou, Structure-Reactivity Correlations in Pyrolysis and Gasification of Sewage Sludge Derived Hydrochar: Effect of Hydrothermal Carbonization. Energy and Fuels 34(2), 1965–1976 (2020). https://testpubschina.acs.org/doi/10.1021/acs.energyfuels.9b04275. [CrossRef] [Google Scholar]
  29. C. He, A. Giannis, J. Y. Wang, Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Applied Energy 111, 257–266 (2013). https://doi.org/10.1016/j.apenergy.2013.04.084. [CrossRef] [Google Scholar]
  30. C. He, Z. Zhang, C. Ge, W. Liu, Y. Tang, X. Zhuang, R. Qiu, Synergistic effect of hydrothermal co-carbonization of sewage sludge with fruit and agricultural wastes on hydrochar fuel quality and combustion behavior. Waste Manage 100, 171–181 (2019). https://doi.org/10.1016/j.wasman.2019.09.018. [CrossRef] [Google Scholar]
  31. A. O. Odeh, Comprehensive Conventional Analysis of Southern Hemisphere Coal Chars of Different Ranks for Fixed Bed Gasification (2015). [Google Scholar]
  32. Y. Gao, X. H. Wang, H. P. Yang, H. P. Chen, Characterization of products from hydrothermal treatments of cellulose. Energy 42(1), 457–465 (2012). https://doi.org/10.1016/j.energy.2012.03.023. [CrossRef] [Google Scholar]
  33. D. Kim, K. Lee, Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 130, 120–125 (2014). https://doi.org/10.1016/j.fuel.2014.04.030. [CrossRef] [Google Scholar]
  34. Y. Shen, S. Yu, S. Ge, X. Chen, X., Ge, Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale. Energy 118, 312–323 (2017). https://doi.org/10.1016/j.energy.2016.12.047. [CrossRef] [Google Scholar]
  35. P. Zhao, Y. Shen, S. Ge, K. Yoshikawa, Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energy Conversion and Management 78, 815–821 (2014). https://doi.org/10.1016/j.enconman.2013.11.026 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.