Issue |
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 9 | |
Section | Pore Scale Imaging and Modeling | |
DOI | https://doi.org/10.1051/e3sconf/202014604003 | |
Published online | 05 February 2020 |
Local Capillary Pressure Estimation Based on Curvature of the Fluid Interface – Validation with Two-Phase Direct Numerical Simulations
Imperial College London, Department of Earth Science and Engineering, London, SW7 2AZ, United Kingdom
* Corresponding author: t.akai17@imperial.ac.uk
With the advancement of high-resolution three-dimensional X-ray imaging, it is now possible to directly calculate the curvature of the interface of two phases extracted from segmented CT images during two-phase flow experiments to derive capillary pressure. However, there is an inherent difficulty of this image-based curvature measurement: the use of voxelized image data for the calculation of curvature can cause significant errors. To address this, we first perform two-phase direct numerical simulations to obtain the oil and water phase distribution, the exact location of the interface, and local fluid pressure. We then investigate a method to compute curvature on the oil/water interface. The interface is defined in two ways. In one case the simulated interface which has a sub-resolution smoothness is used, while the other is a smoothed interface which is extracted from synthetic segmented data based on the simulated phase distribution. Computed mean curvature on these surfaces are compared with that obtained from the fluid pressure computed directly in the simulation. We discuss the accuracy of image-based curvature measurements for the calculation of capillary pressure and propose the best way to extract an accurate curvature measurement, quantifying the likely uncertainties.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.