Open Access
Issue
E3S Web Conf.
Volume 146, 2020
The 2019 International Symposium of the Society of Core Analysts (SCA 2019)
Article Number 04003
Number of page(s) 9
Section Pore Scale Imaging and Modeling
DOI https://doi.org/10.1051/e3sconf/202014604003
Published online 05 February 2020
  1. R.T. Armstrong, M.L. Porter, and D. Wildenschild, “Linking pore-scale interfacial curvature to column-scale capillary pressure,” Adv. Water Resour., vol. 46, no. 6, pp. 55–62, Sep. 2012, doi: 10.1016/j.advwatres.2012.05.009. [Google Scholar]
  2. M.L. Porter, D. Wildenschild, G. Grant, and J.I. Gerhard, “Measurement and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL-water-glass bead system,” Water Resour. Res., vol. 46, no. 8, pp. 1–10, Aug. 2010, doi: 10.1029/2009WR007786. [Google Scholar]
  3. T. Li, S. Schlüter, M.I. Dragila, and D. Wildenschild, “An improved method for estimating capillary pressure from 3D microtomography images and its application to the study of disconnected nonwetting phase,” Adv. Water Resour., vol. 114, pp. 249–260, 2018, doi: 10.1016/j.advwatres.2018.02.012. [Google Scholar]
  4. A.L. Herring, J. Middleton, R. Walsh, A. Kingston, and A. Sheppard, “Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone,” Adv. Water Resour., vol. 107, pp. 460–469, 2017, doi: 10.1016/j.advwatres.2017.05.011. [Google Scholar]
  5. I. Halliday, A.P. Hollis, and C.M. Care, “Lattice Boltzmann algorithm for continuum multicomponent flow,” Phys. Rev. E, vol. 76, no. 2, p. 026708, Aug. 2007, doi: 10.1103/PhysRevE.76.026708. [Google Scholar]
  6. D. D’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.-S. Luo, “Multiple-relaxation-time lattice Boltzmann models in three dimensions,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 360, no. 1792, pp. 437–451, Mar. 2002, doi: 10.1098/rsta.2001.0955. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Brackbill, D. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” J. Comput. Phys., vol. 100, no. 2, pp. 335–354, Jun. 1992, doi: 10.1016/0021-9991(92)90240-Y. [Google Scholar]
  8. Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method,” Phys. Rev. E, vol. 65, no. 4, p. 046308, Apr. 2002, doi: 10.1103/PhysRevE.65.046308. [Google Scholar]
  9. Z. Yu and L.-S. Fan, “Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow,” Phys. Rev. E, vol. 82, no. 4, p. 046708, Oct. 2010, doi: 10.1103/PhysRevE.82.046708. [Google Scholar]
  10. M. Latva-Kokko and D.H. Rothman, “Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids,” Phys. Rev. E, vol. 71, no. 5, p. 056702, May 2005, doi: 10.1103/PhysRevE.71.056702. [Google Scholar]
  11. T. Akai, B. Bijeljic, and M.J. Blunt, “Wetting boundary condition for the color-gradient lattice Boltzmann method: Validation with analytical and experimental data,” Adv. Water Resour., vol. 116, no. March, pp. 56–66, Jun. 2018, doi: 10.1016/j.advwatres.2018.03.014. [Google Scholar]
  12. T. Akai, A.M. Alhammadi, M.J. Blunt, and B. Bijeljic, “Modeling Oil Recovery in Mixed-Wet Rocks: Pore-Scale Comparison Between Experiment and Simulation,” Transp. Porous Media, vol. 127, no. 2, pp. 393–414, Mar. 2019, doi: 10.1007/s11242-018-1198-8. [Google Scholar]
  13. Y.H. Qian, D. D’Humières, and P. Lallemand, “Lattice BGK models for Navier-Stokes equation,” EPL (Europhysics Lett., vol. 17, no. 6, p. 479, 1992. [Google Scholar]
  14. R.T. Armstrong, C.H. Pentland, S. Berg, J. Hummel, D. Lichau, and L. Bernard, “Estimation of curvature from micro-CT liquid-liquid displacement studies with pore scale resolution,” Int. Symp. Soc. Core Anal., vol. SCA2012-55, no. August, p. 6, 2012, doi: 10.1109/CVPR.1994.323794. [Google Scholar]
  15. M. Andrew, B. Bijeljic, and M.J. Blunt, “Pore-by-pore capillary pressure measurements using X-ray microtomography at reservoir conditions: Curvature, snap-off, and remobilization of residual CO 2,” Water Resour. Res., vol. 50, no. 11, pp. 8760–8774, Nov. 2014, doi: 10.1002/2014WR015970. [Google Scholar]
  16. Q. Lin, B. Bijeljic, R. Pini, M.J. Blunt, and S. Krevor, “Imaging and Measurement of Pore-Scale Interfacial Curvature to Determine Capillary Pressure Simultaneously With Relative Permeability,” Water Resour. Res., vol. 54, no. 9, pp. 7046–7060, Sep. 2018, doi: 10.1029/2018WR023214. [Google Scholar]
  17. W.E. Lorensen and H.E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,” in Proceedings of the 14th annual conference on Computer graphics and interactive techniques - SIGGRAPH ‘87, 1987, pp. 163–169, doi: 10.1145/37401.37422. [CrossRef] [Google Scholar]
  18. L.R. Herrmann, “Laplacian-isoparametric grid generation scheme,” J. Eng. Mech. Div., vol. 102, no. 5, pp. 749–907, 1976. [Google Scholar]
  19. G. Taubin, “Curve and surface smoothing without shrinkage,” in Proceedings of IEEE International Conference on Computer Vision, 1995, pp. 852–857, doi: 10.1109/ICCV.1995.466848. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.