Open Access
E3S Web Conf.
Volume 85, 2019
EENVIRO 2018 – Sustainable Solutions for Energy and Environment
Article Number 04002
Number of page(s) 8
Section Solar Energy in Buildings
Published online 22 February 2019
  1. TM, Razykov, CS, Ferekides, D, Morel, E, Stefanakos, HS, Ullal, HM Upadhyaya, Solar photovoltaic electricity: Current status and future prospects. Sol. Energy (2011), 85, 1580-1608. [Google Scholar]
  2. M. Bragard, N. Soltau, S. Thomas, R. De Doncker The balance of renewable sources and user demands in grids: Power electronics for modular battery energy storage systems IEEE Trans. Power Electron., 25 (12) (2010), pp. 3049-3056. [Google Scholar]
  3. S. M. Dawoud, X. Lin, M. I Okba, Hybrid renewable microgrid optimization techniques: A review, Ren. and Sust. Energy Reviews Volume 82, Part 3, (2018), pp. 2039-2052, [CrossRef] [Google Scholar]
  4. A. H. Fathima, K. Palanisamy, Optimization in microgrids with hybrid energy systems-A review, Ren. and Sust. Energy Reviews Volume 45, (2015), pp. 431-446, [CrossRef] [Google Scholar]
  5. E. Craparo, M. Karatas, D. I. Singham, A robust optimization approach to hybrid microgrid operation using ensemble weather forecasts, App. Energy, Volume 201, (2017), pp. 135-147, [CrossRef] [Google Scholar]
  6. M.A.M. Ramli, H.R.E.H. Bouchekara, A.S.Alghamdi, Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm, Ren. Energy, Volume 121, (2018), pp. 400-411, [CrossRef] [Google Scholar]
  7. J. Jung, M. Villaran, Optimal planning and design of hybrid renewable energy systems for microgrids, Ren. and Sust. Energy Rev., Volume 75, (2017), pp. 180-191, [CrossRef] [Google Scholar]
  8. J. Li, W. wei, J. Xiang, A simple sizing algorithm for stand-alone PV/Wind/Battery hybrid microgrids, Energies (2012), 5(12), pp. 5307-5323, [CrossRef] [Google Scholar]
  9. A.M.Abdilahi, A.H.M. Yatim, M. W. Mustafa, O. T. Khalaf, A. F. Shumran, F. M. Nor, Feasibility study of renewable energy-based microgrid system in Somaliland’s urban centers, Rene. and Sust. Energy Rev.,(2014), vol. 40, pp.1048-1059. [CrossRef] [Google Scholar]
  10. H. Louie, Operational analysis of hybrid solar/wind microgrids using measured data, Energy for Sust. Dev., Vol. 31, (2016), pp. 108-117, [CrossRef] [Google Scholar]
  11. H. Fathabadi, Novel standalone hybrid solar/wind/fuel cell power generation system for remote areas, Sol. Energy, Vol. 146, (2017), pp. 30-43, [Google Scholar]
  12. M.D.A.Al-falahi, S.D.G.Jayasinghe, H.Enshaei, A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system, Energy Conv. and Manag., Vol. 143, (2017), pp. 252-274, [CrossRef] [Google Scholar]
  13. C. Brancucci Martinez-Anido, et. Al., 2016, The value of day-ahead solar power forecasting improvement, Sol. Energy 129 (2016) 192-203. [Google Scholar]
  14. M. Wittmann., et al., Case studies on the use of solar irradiance forecast for optimized operation strategies of solar thermal power plants. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., (2008), 1 (1), 18-27. [CrossRef] [Google Scholar]
  15. S. B. Qamara and I. Janajreha, Renewable Energy Sources for Isolated Self-sufficient Microgrids: Comparison of Solar and Wind Energy for UAE, Energy Proc. 103 (2016) 413-418, doi:10.1016/j.egypro.2016.11.308. [CrossRef] [Google Scholar]
  16. Voyant, C. et al.,. Statistical parameters as a means to a priori assess the accuracy of solar forecasting models. Energy (2015), 90 (Part 1), 671-679. [CrossRef] [Google Scholar]
  17. A. Grantham, Y. R. Gel, J. Boland, Nonparametric short-term probabilistic forecasting for solar radiation, Sol. Energy 133 (2016) 465-475, [Google Scholar]
  18. L. M. Aguiar, B. Pereira, P. Lauret, F. Díaz, M. David, Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting, Renewable Energy 97 (2016) 599-610, [CrossRef] [Google Scholar]
  19. K. Bakirci, Prediction of global solar radiation and comparison with satellite data. J Atmospheric Solar-Terrestrial Phys (2017);152:41-9. j.jastp.2016.12.002. [CrossRef] [Google Scholar]
  20. B. Jamil, N. Akhtar, Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India, Ren. and Sust. Energy Rev. 77 (2017) 1326-1342, [CrossRef] [Google Scholar]
  21. F. Meziania, M. Boulifaa, Z. Ameura, Determination of the global solar irradiation by MSG-SEVIRI images processing in Algeria,Energy Proc. 36 (2013) 525-534, doi:10.1016/j.egypro.2013.07.061. [CrossRef] [Google Scholar]
  22. M. Nia1, M. Chegaar, M.F. Benatallah1 and M. Aillerie,Contribution to the quantification of solar radiation in Algeria, Energy Proc. 36 (2013) 730-737, doi:10.1016/j.egypro.2013.07.085. [CrossRef] [Google Scholar]
  23. G. Nottona, C. Paolia, S. Diafb, Estimation of tilted solar irradiation using Artificial Neural Networks, Energy Proc. 42 (2013) 33-42, doi:10.1016/j.egypro.2013.11.003. [CrossRef] [Google Scholar]
  24. A. De Miguel, J. Bilbao, R. Aguiar, H. Kambezidis, E. Negro, Diffuse solar irradiation model evaluation in the North Mediterranean belt area. Sol. Energy (2001);70(2):143-53, [Google Scholar]
  25. DHW Li, JC Lam, Evaluation of slope irradiance and illuminance models against measured Hong Kong data. Building Environ. (2000);35:501-509, [CrossRef] [Google Scholar]
  26. JC. Lam, KWW. Wan, L. Yang, Solar radiation modelling using ANNs for different climates in China. Energy Conv. and Manag. (2008);49:1080-1090, [CrossRef] [Google Scholar]
  27. J. Kantersa, M. Walla, E. Kjellssonb, The solar map as a knowledge base for solar energy use, Energy Proc. 48 (2014) 1597-1606, doi:10.1016/j.egypro.2014.02.180. [CrossRef] [Google Scholar]
  28. City of Basel, Die Dächer Basels-das erste kantonale Solarkraftwerk, in, 2013. [Google Scholar]
  29. C. Solanki, G. Nagababu, S. Kachwaha, Assessment of offshore solar energy along the coast of India, Energy Proc. 138 (2017) 530-535, 10.1016/j.egypro.2017.10.240. [CrossRef] [Google Scholar]
  30. B. Sivaneasan, C. Y. YU and K. P. Goh, Solar Forecasting using ANN with Fuzzy Logic Pre-processing, Energy Proc. 143 (2017) 727-732, 10.1016/j.egypro.2017.12.753. [CrossRef] [Google Scholar]
  31. P. V. Unguresan, R. A. Porumb, D. Petreus, A. G. Pocola, O. G. Pop and M. C. Balan, Orientation of Facades for Active Solar Energy Applications in Different Climatic Conditions, J. Energy Eng. 143(6) (2017): 04017059, [CrossRef] [Google Scholar]
  32. P. Unguresan, D. Petreus, A. Pocola and M. Balan, Potential of solar ORC and PV systems to provide electricity under Romanian climatic conditions, Energy Proc. 85 (2016) 584-593, doi:10.1016/j.egypro.2015.12.248. [CrossRef] [Google Scholar]
  33. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, Second ed., Wiley & Sons, Singapore, 1980. [Google Scholar]
  34. V. Quaschning, Understanding Renewable Energy Systems, Earthscan, London, 2007. [Google Scholar]
  35. E. Skoplaki, J.A. Palyvos, On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations, Solar Energy, (2009) 83 614-624, doi:10.1016/j.solener.2008.10.008. [CrossRef] [Google Scholar]
  36. D.L. Evans, L.W. Florschuet, Cost studies on terrestrial photovoltaic power systems with sunlight concentrationion, Solar Energy (1975) 19 255-262, [CrossRef] [Google Scholar]
  37. A. Dolara, S. Leva, G. Manzolini, Comparison of different physical models for PV power output prediction, Solar Energy (2015) 119 83-99, [CrossRef] [Google Scholar]
  38. S. Sobri, S. Koohi-Kamali, N.A. Rahim, Solar photovoltaic generation forecasting methods: A review, Energy Conversion and Management (2018) 156 459-497, [Google Scholar]
  39. L. Migliorini, L. Molinaroli, R. Simonetti, G. Manzolini, Development and experimental validation of a comprehensive thermoelectric dynamic model of photovoltaic modules, Solar Energy (2017) 144 489-501, [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.