Open Access
E3S Web Conf.
Volume 95, 2019
The 3rd International Conference on Power, Energy and Mechanical Engineering (ICPEME 2019)
Article Number 02005
Number of page(s) 7
Section Energy and Power System
Published online 13 May 2019
  1. Templeton M. R., Graham N. J. D., Martijn B. J., Royce A., & Kruithof J. C. Low pressure UV/H2O2 treatment for the degradation of the pesticides metaldehyde, clopyralid and mecoprop e Kinetics and reaction product formation, 91, 285–294 (2016). [Google Scholar]
  2. Solís R. R., Rivas F. J., Gimeno O. Applied Catalysis B: Environmental Removal of aqueous metazachlor, tembotrione, tritosulfuron and ethofumesate by heterogeneous monopersulfate decomposition on lanthanum-cobalt perovskites. “Applied Catalysis B, Environmental,”200, 83–92 (2017). [Google Scholar]
  3. Xu G., Bu T., Wu M. Electron beam induced degradation of clopyralid in aqueous solutions, 759–764 (2011). [Google Scholar]
  4. Vidales M. J. M., Castro M. P., Sáez C., Cañi zares P., & Rodrigo M. A. Irradiated-assisted electrochemical processes in semi-pilot scale for the removal of clopyralid from soil washing wastes. Separation and Purification Technology (2018). [Google Scholar]
  5. Rodriguez M., Muñoz -morales M., Pérez J. F., Saez, C., Ca, P., Eduardo C., Rodrigo M. A. Towards the development of efficient electro-Fenton reactors for soil washing wastes through microfluidic cells towards the development of efficient electro-Fenton reactors for soil washing wastes through microfluidic cells(2018). [Google Scholar]
  6. Özcan A., Oturan N., Yücel Ş., Oturan M. A. (n.d.). International Journal of Environmental ElectroFenton treatment of aqueous Clopyralid solutions, 37–41(2014). [Google Scholar]
  7. Tizaoui C., Mezughi K. and Bickley R., Heterogeneous photocatalytic removal of the herbicide clopyralid and its comparison with UV/H2O2 and ozone oxidation techniques, Desalination 273:197–204, (2011). [CrossRef] [Google Scholar]
  8. Sáez C., Cañizares P., & Rodrigo M. A. Electrochemistry Communications a new strategy for the electrolytic removal of organics based on adsorption onto granular activated carbon. Electrochemistry Communications, 90, 47–50(2018). [Google Scholar]
  9. Anderluh V. B., Orˇ, D. Z., Abramovi B. F., & Soji, D. V. Photodegradation of clopyralid in TiO 2 suspensions: Identification of intermediates and reaction pathways, 168, 94–101 (2009). [Google Scholar]
  10. Berberidou C., Kitsiou V., Karahanidou S., Lambropoulou D. A., Kouras A., Kosma C. I., Poulios, I. Photocatalytic degradation of the herbicide clopyralid : kinetics, degradation pathways and ecotoxicity evaluation, (2015). [Google Scholar]
  11. Orellana-garcía F., Álvarez, M. A., López -ramón, V., Rivera-utrilla J., Sánchez -polo M., & Mota, A. J. Photodegradation of herbicides with different chemical natures in aqueous solution by ultraviolet radiation. Effects of operational variables and solution chemistry, 255, 307–315(2014). [Google Scholar]
  12. Hassani A., Khataee A., Fathinia M., & Karaca S. PT SC. Process Safety and Environmental Protection (2018). [Google Scholar]
  13. Ozcan A., & Gençten M. Chemosphere Investigation of acid red 88 oxidation in water by means of electroFenton method for water purification, 146, 245–252 (2016). [Google Scholar]
  14. Carboneras M. B., Cañizares P., Rodrigo M. A., & Fernandez-morales F. J. Improving biodegradability of soil washing effluents using anodic oxidation. Bioresource Technology (2017). [Google Scholar]
  15. Rodrgí uez E. M., Márquez G., León, E. A., Álva rez P. M., Amat A. M., & Beltrán F. J. Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water. Journal of Environmental Management, 127, 114–124 (2013). [CrossRef] [PubMed] [Google Scholar]
  16. Sans C., & Esplugas S. Priority pesticide dichlorvos removal from water by ozonation process: reactivity, transformation products and associated toxicity. Separation and Purification Technology (2017). [Google Scholar]
  17. Farines V., Baig S., Albet J., Molinier J., & Legay C. Ozone transfer from gas to water in a co-current upflow packed bed reactor containing silica gel, 91, 67–73(2003). [Google Scholar]
  18. Demir F., & Atguden A. Experimental Investigation on the Microbial Inactivation of Domestic Well Drinking Water using Ozone under Different Treatment Conditions Experimental Investigation on the Microbial Inactivation of Domestic Well Drinking Water using Ozone under Different Treatment Conditions, 9512 (2016). [Google Scholar]
  19. Solsí, R . R., Rivas F. J., Ferreira L. C., Pirra A., Toxic / Hazardous Substances and Environmental Engineering Integrated aerobic biological – chemical treatment of winery wastewater diluted with urban wastewater. LED-based photocatalysis in the presence of monoperoxysulfate, 4529 (2017). [Google Scholar]
  20. Tizaoui C., & Grima N. Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution. Chemical Engineering Journal, 173(2), 463–473 (2011). [CrossRef] [Google Scholar]
  21. TangtaoYa Junmin Pe, Yun Zh, Xuan He, Yidong Hou, Ling Wu, Xianzhi Fu, Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites, Applied Catalysis B: Environmental, (2017). [Google Scholar]
  22. Sevilla-morán B., Mateo-miranda M. M., & José, L. (n.d.). Sunlight transformation of sethoxydimlithium in natural waters and effect of humic acids, International Journal of Environmental 37–41(2014). [Google Scholar]
  23. José J., Sevilla -morán B., López -goti, C., Calvo, L., Alonso-prados, J. L., & Sandní -españa, P. Science of the Total Environment Photolysis of clethodim herbicide and a formulation in aquatic environments : Fate and ecotoxicity assessment of photoproducts by QSAR models. Science of the Total Environment, 615, 643–651(2018). [CrossRef] [Google Scholar]
  24. S. Najar, A. Ouederni, and A. Ratel, Activated carbon from olive stones by a two step process: influence of production parameters on textural characteristics, Annales de Chimie Science des Matériaux 31: 151–167, (2006). [CrossRef] [Google Scholar]
  25. Rivera-Utrilla. J, Bautista-Toledo. I, FerroGarcía. M.A, MorenoCastilla. C, Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption, J. Chem. Technol. Biotechnol., 76:1209–1215, 2001. [Google Scholar]
  26. John L, Gennady Yu. Gor, Alexander V. Neimark, Density functional theory methods for characterization of porous materials,Colloids and Surfaces A: Physicochem. Eng. Aspects 437:3– 32, (2013). [CrossRef] [Google Scholar]
  27. Tan I. A. W., Hameed B. H., & Ahmad A. L. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon, 127, 111–119 (2007). [Google Scholar]
  28. Malik P. K. Dye removal from wastewater using activated carbon developed from sawdust : adsorption equilibrium and kinetics, 113, 81– 88(2004). 22 [Google Scholar]
  29. Srihari, V., & Das, A. The kinetic and thermodynamic studies of phenol-sorption onto three agro-based carbons, 225, 220–234(2008). [Google Scholar]
  30. Liu, Q., Zheng, T., Wang, P., Jiang, J., & Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, 157, 348–356(2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.