Open Access
Issue
E3S Web Conf.
Volume 128, 2019
XII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2019)
Article Number 09004
Number of page(s) 6
Section Advanced Numerical Methods
DOI https://doi.org/10.1051/e3sconf/201912809004
Published online 08 November 2019
  1. G.P. Corten, H.F. Veldkamp, “Insects can halve wind turbine power”, Nature, 412, pp. 42–43 (2002) [Google Scholar]
  2. M.G. Khalfallah, A.M. Koliub, “Effect of dust on the performance of wind turbines”, Desalination, 209(1–3), pp.209–220 (2007) [CrossRef] [Google Scholar]
  3. S. Lee, H.S. Kim, M.B. Bragg, “Investigation of factors that influence iced-airfoil aerodynamics” AIAA paper 2000-0099 (2000) [Google Scholar]
  4. P. Sundaram, T.K. Sengupta, S. Sengupta, “Is Tollmien-Schlichting wave necessary for transition of zero pressure gradient boundary layer flow”, Physics of Fluids, 31(3), 031701 (2019) [CrossRef] [Google Scholar]
  5. Y. Zhang, T. Igarashi, H. Hu, “Experimental investigations on the performance degradation of a low-Reynolds-number airfoil with distributed leading edge roughness”, AIAA 2011-1101 (2011) [Google Scholar]
  6. R.S. Ehrmann, B. Wilcox, E.B. White “Effect of surface roughness on wind turbine performance”, Sandia Report, SAND2017--10669 (2017) [Google Scholar]
  7. A. Sareen, C.A. Sapre, M.S. Selig, “Effects of leading edge erosion on wind turbine blade performance”, Wind Ener., 17, pp.1531–1542 (2014) [CrossRef] [Google Scholar]
  8. B. Noura, S. Khelladi, R. Dizene, F. Bakir, “Numerical simulation of surface roughness effects on dynamic stall of wind turbine blade”, Journal of Power and Energy Systems, 7(1), pp.32–48 (2013) [CrossRef] [Google Scholar]
  9. ANSYS Fluent 18.0, Th. Guide, http://www.ansys.com [Google Scholar]
  10. F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA Journal, 32(8), pp.1598–1605 (1994) [NASA ADS] [CrossRef] [Google Scholar]
  11. A. Dhiliban, P. Meena, P.S. Narasimhan, M. Vivek, S.N Pillai, K.M. Parammasivam, “Aerodynamic performance of rear roughness airfoils”, in: S. Rajan, P. Harikrishna, (eds.), Proc. 8th Asia-Pacific Conference on Wind Engineering, pp.193–200, (Research Publishing, Singapore, 2013) [CrossRef] [Google Scholar]
  12. B.E. Launder, D.B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering, 3, pp.269–289 (1972) [CrossRef] [Google Scholar]
  13. T. Bai, J. Liu, W. Zhang, Z. Zou, “Effect of surface roughness on the aerodynamic performance of turbine blade cascade”, Propulsion and Power Research, 3(2), pp.82–89 (2014) [CrossRef] [Google Scholar]
  14. R.B. Langtry, F.R. Menter, “Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes”, AIAA Journal, 47(12), pp.2894–2906 (2009) [CrossRef] [Google Scholar]
  15. F.R. Menter, R. Langtry, S. Völker, “Transition modelling for general purpose CFD codes”, Flow Turbulence Combustion, 77, pp. 277–303 (2006) [CrossRef] [Google Scholar]
  16. X. Zhang, G. Wang, M. Zhang, H. Liu, W. Li, “Numerical study of the aerodynamic performance of blunt trailing-edge airfoil considering the sensitive roughness height”, International Journal of Hydrogen Energy, 42, pp.18252–18262 (2017) [CrossRef] [Google Scholar]
  17. M. Schramm, H. Rahimi, B. Stoevesandt, K. Tangager, “The influence of eroded blades on wind turbine performance using numerical simulation”, Energies, 10, 1420 (2017) [CrossRef] [Google Scholar]
  18. W. Han, J. Kim, B. Kim, “Effects of contamination and erosion at the leading edge of blade tip airfoil on the annual energy production of wind turbines”, Renewable Energy, 115, pp.817–823 (2018) [CrossRef] [Google Scholar]
  19. H. Schlichting, Boundary-Layer Theory, 6th Ed. (McGraw-Hill, NY, 1968) [Google Scholar]
  20. A. C Benim, “A finite element solution of radiative heat transfer in participating media utilizing the moment method”, Computer Methods in Applied Mechanics and Engineering, 67(1), pp.1–14 (1988) [CrossRef] [Google Scholar]
  21. A.C. Benim, M. Geiger, S. Doehler, M. Schoenenberger, H. Roemer, “Modelling the flow in the exhaust hood of steam turbines under consideration of turbine-exhaust hood interaction”, in: Proceedings of the 1st European Conference on Turbomachinery - Fluid Dynamic and Thermodynamic Aspects: Computational Methods, Erlangen, Germany, March 1-3, 1995, Book Series: VDI Berichte, Vol. 1185, pp.343–357 (VDI Verlag, Duesseldorf, 1995) [Google Scholar]
  22. A.C. Benim, M. Cagan, D. Gunes, “Computational analysis of transient heat transfer in turbulent pipe flow”, International Journal of Thermal Sciences, 43(8), pp.725–732 (2004) [CrossRef] [Google Scholar]
  23. K.A. Flack, M.P. Schultz, “Review of hydraulic roughness scales in the fully rough regime”, Journal of Fluids Engineering, 132, 041203 (2010) [CrossRef] [Google Scholar]
  24. P.A. Durbin, B.A. Pettersson Reif, Statistical Theoy and Modeling for Turbulent Flows, 2nd Ed. (Wiley, Hoboken, NJ, USA, 2011) [Google Scholar]
  25. A.C. Benim, A. Nahavandi, K.J Syed, “URANS and LES analysis of turbulent swirling flows”, Progress in Computational Fluid Dynamics - An International Journal, 5(8), pp.444–454 (2005) [CrossRef] [Google Scholar]
  26. P. Sagaut, Large Eddy Simulation for Incompressible Flows - An Introduction (Springer, Berlin, 2006) [Google Scholar]
  27. E. Garnier, N. Adams, P. Sagaut, Large Eddy Simulation for Compressible Flows (Springer, Berlin, 2009) [CrossRef] [Google Scholar]
  28. F.F. Grinstein, L.G. Margolin, W.J. Rider, Implicit Large Eddy Simulation (Cambridge University Press, Cambridge, 2007) [CrossRef] [Google Scholar]
  29. A.C. Benim, M.P. Escudier, A. Nahavandi, A.K Nickson, K.J Syed, F. Joos, “Experimental and numerical investigation of isothermal flow in an idealized swirl combustor”, International Journal of Numerical Methods for Heat & Fluid Flow, 20(3), pp.348–370 (2010) [CrossRef] [Google Scholar]
  30. A.C. Benim, S. Iqbal, W. Meier, F. Joos, A. Wiedermann, “Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor”, Applied Thermal Engineering, 110, pp.202–212 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.