Open Access
Issue
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
Article Number 12008
Number of page(s) 10
Section Public Health and Epidemiology
DOI https://doi.org/10.1051/e3sconf/202020212008
Published online 10 November 2020
  1. Rothana HA, Byrareddy SN, The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak, J. Autoimmun. (2020);109:102433. [Google Scholar]
  2. https://www.worldometers.info/coronavirus/. Accessed on 22 June, (2020). [Google Scholar]
  3. www3.nhk.or.jp. Accessed on April 17, (2020). [Google Scholar]
  4. Ferguson et al., Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, Imperial College COVID-19 Response Team, (2020). [Google Scholar]
  5. D. Aldila et al., A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment : The case of Jakarta, Indonesia, Accepted in Chaos, Solitons and Fractals, June (2020). [Google Scholar]
  6. D. Aldila et al., Optimal Control Problem Arising From COVID-19 Transmission Model With Rapid-Test, under review in Alexandria Engineering Journal, since June (2020). [Google Scholar]
  7. D. Aldila, Cost effectiveness analysis and backward bifurcation analysis on COVID-19 transmission model considering direct and indirect transmission, under review in Communications in Mathematical Biology and Neuroscience, since June (2020). [Google Scholar]
  8. Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J. M., Yan, P., and Chowell, G., Real-time forecasts of the COVID-19 epidemic in china from february 5th to february 24th, 2020. Infectious Disease Modelling, 5:256–263, (2020). [CrossRef] [PubMed] [Google Scholar]
  9. Abdelfatah Kouidere, Bouchaib Khajji, Amine El Bhih, Omar Balatif, Mostafa Rachik A mathematical modeling with optimal control strategy of transmission of COVID-19 pandemic virus Commun. Math. Biol. Neurosci., 2020 (2020), Article ID 24 [Google Scholar]
  10. O. Torrealba-Rodriguez, R. A. Conde-Gutiérrez, A. L. Hernández-Javier, Modeling and prediction of COVID-19 in Mexico applying mathematical and computational models, Chaos, Solitons & Fractals, Volume 138, September (2020), Article 109946 [CrossRef] [Google Scholar]
  11. Tingzhe Sun, Yan Wang, Modeling COVID-19 epidemic in Heilongjiang province, China Chaos, Solitons & Fractals, Volume 138, September (2020), Article 109949. [Google Scholar]
  12. M. Highazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic Chaos, Solitons & Fractals, Volume 138, September (2020), Article 110007. [Google Scholar]
  13. Sarbaz H. A. Khoshnaw, Muhammad Shahzad, Mehboob Ali, Faisal Sultan, A quantitative and qualitative analysis of the COVID–19 pandemic model Chaos, Solitons & Fractals, Volume 138, September (2020), Article 109932. [Google Scholar]
  14. O. Diekmann, J. A. P. Heesterbeek, and M. G. Roberts, “The construction of next-generation matrices for compartmental epidemic models,” Journal of the Royal Society Interface, vol. 7, no. 47, pp. 873–885, (2010). [Google Scholar]
  15. Aldila, D., Latifah, S. L., Dumbela P.A.., Dynamical analysis of mathematical model for Bovine Tuberculosis among human and cattle population, Communication in Biomathematical Sciences, vol. 2, No. 1., pp: 55-64, (2019). [CrossRef] [Google Scholar]
  16. Handari B.D., Vitra, F., Ahya R., Nadya S. T., Aldila D., Optimal control in a malaria model: intervention of fumigation and bed nets, Advances in Difference Equations, 2019:497 (2019), doi.org/10.1186/s13662-019-2424-6. [Google Scholar]
  17. Bustamam, A., Aldila, D., Yuwanda, A., Understanding Dengue Control for Short- and Long-Term Intervention with a Mathematical Model Approach, Journal of Applied Mathematics 2018,9674138, (2018). [PubMed] [Google Scholar]
  18. Aldila, D., Handari, B.D., Widyah, A., Hartanti, G., Strategies of optimal control for hiv spreads prevention with health campaign, Communications in Mathematical Biology and Neuroscience 2020,7, (2020). [Google Scholar]
  19. Aldila, D., Seno, H., A Population Dynamics Model of Mosquito-Borne Disease Transmission, Focusing on Mosquitoes’ Biased Distribution and Mosquito Repellent Use, Bulletin of Mathematical Biology 81(12), pp. 4977-5008, (2020). [Google Scholar]
  20. Aldila, D., Padma, H., Khotimah, K., Desjwiandra, B., Tasman, H., Analyzing the MERS disease control strategy through an optimal control problem, International Journal of Applied Mathematics and Computer Science 28(1), pp. 169-184, (2018). [Google Scholar]
  21. Aldila, D., Nuraini, N., Soewono, E., Optimal control problem in preventing of swine flu disease transmission, Applied Mathematical Sciences (69-72), pp. 3501-3512, (2014). [CrossRef] [Google Scholar]
  22. N. Chitnis, J.M. Hyman, J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol. 70 (5) (2008) 1272–1296. [Google Scholar]
  23. Rohman, M.I.S., Handari, B.D., Aldila, D., An impulse fumigation scenario to control dengue spreads, AIP Conference Proceedings 2023 (2018), 020213. [Google Scholar]
  24. Hafidh, E.P., Aulida, N., Handari, B.D., Aldila, D., Optimal control problem from tuberculosis and multidrug resistant tuberculosis transmission model, AIP Conference Proceedings 2023 (2018), 020223. [Google Scholar]
  25. Aldila, D., Nareswari, K., Tasman, H., An optimum control model for resistance fumigation for dengue, AIP Conference Proceedings 2021 (2018), 060001. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.