Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 10001
Number of page(s) 5
Section Minisymposium: Shale and Clay Behavior for Energy Production and Nuclear Waste Disposal (organized by Alessio Ferrari and Russell T. Ewy)
DOI https://doi.org/10.1051/e3sconf/202020510001
Published online 18 November 2020
  1. A. Gens and E. E. Alonso. A framework for the behaviour of unsaturated expansive clays. Canadian Geotechnical journal. 29, 1013 (1992). [CrossRef] [Google Scholar]
  2. J. A. Bosch, A. Ferrari and L. Laloui. On the coupling between water retention and volume change of compacted bentonite (under review). [Google Scholar]
  3. M. Nuth and L. Laloui. Effective stress concept in unsaturated soils. International Journal for Numerical and Analytical Methods in Geomechanics. 32, 771 (2008). [Google Scholar]
  4. A.W. Bishop. The effective stress principle. Teknisk ukeblad. 39, 859 (1959). [Google Scholar]
  5. A.N. Zhou, D. Sheng, S.W. Sloan, A. Gens. Intepretation of unsaturated soil behaviour in the stress-saturation space I: volume change and water retention behaviour. Computers and Geotechnics. 43, 178 (2012). [Google Scholar]
  6. A. Revil, N. Lu. Unified water isotherms for clayey porous materials. Water Resources Research. 49, 5685 (2013). [Google Scholar]
  7. Van Genuchten. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science Society of America Journal. 44, 892 (1980). [CrossRef] [Google Scholar]
  8. D. Gallipoli, S. Wheeler, M. Karstunen. Modelling the variation of the degree of saturation in a deformable unsaturated soil. Géotechnique. 53, 105 (2003). [CrossRef] [Google Scholar]
  9. H. Freundlich. Kapillarchemie eine darstellung der chemie der kolloide und verwandter geniete. akademische Verlagsgesellschaft. (1909). [Google Scholar]
  10. M.V. Villar. MX80 bentonite termal-hydro-mechanical characterisation. Informes Técnicos CIEMAT. 1053, 39 (2005). [Google Scholar]
  11. A.M. Tang and Y.J. Cui. Journal of Rock Mechanics and Geotechnical Engineering. Effects of mineralogy on thermo-hydro-mechanical parameters of MX80 bentonite. 2, 91-96 (2010). [Google Scholar]
  12. A.M. Tang and Y.J. Cui. Journal of Rock Mechanics and Geotechnical Engineering., 2 (1): 39–43 (2010). [Google Scholar]
  13. Dueck and Nilsson. SKB technical report TR-10-55 (2011). [Google Scholar]
  14. Z. G. Yigzaw, O. Cuisiner, L. Massat, F. Masrouri. Role of different suction components on swelling behaviour of compacted bentonites. Applied Clay Science. 120, 81 (2016). [Google Scholar]
  15. A. Ferrari, A. Seiphoori, Ruedi, J., L. Laloui. Shot-clay assessment of the hydro-mechanical behaviour. Engineering geology, 173, pp.10-18 (2014). [Google Scholar]
  16. D. Manca, A. Ferrari, L. Laloui. Fabric evolution and the related swelling behaviour of a sand/bentonite mixture upon hydro-chemo-mechanical loadings. Géotechnique. 66, 17 (2016). [Google Scholar]
  17. A. Seiphoori, A. Ferrari, L. Laloui. Water retention behaviour and microstructural evolution of MX80 bentonite during wetting and drying cycles. Géotechnique. 64, 721 (2014). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.