Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 12006
Number of page(s) 6
Section Minisymposium: Low Carbon Geotechnical Engineering (organized by Alessandro Tarantino, Enrique Romero, and Alessio Ferrari)
DOI https://doi.org/10.1051/e3sconf/202020512006
Published online 18 November 2020
  1. E. T. Dean, Offshore geotechnical engineering: Principles and practice (2010) [Google Scholar]
  2. J. Locat, H. Lee, Submarine landslides: Advances and challenges. Can. Geotech. J. 39.1, pp. 193–212 (2002) [CrossRef] [Google Scholar]
  3. D. G. Masson, C. B. Harbitz, R. B.Wynn, G. Pedersen, F. Løvholt, Submarine Landslides: Processes, Triggers and Hazard Prediction. Phil. Trans.: Math., Phys. Eng. Sc. 364.1845, pp. 2009–2039 (2006) [Google Scholar]
  4. M. Vanneste, N. Sultan, S. Garziglia, C. F. Forsberg, J.-S. L’Heureux, Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigantions. Mar. Geol. 352.C, pp. 183–214 (2014) [Google Scholar]
  5. S. Lafuerza, N. Sultan, M. Canals, G. Lastras, A. Cattaneo, J. Frigola, S. Costa, C. Berndt, Failure mechnisms of Ana Slide from geotechnical evidence, Eivissa Channel, Western Mediterranean Sea. Mar. Geol. 307-310, pp. 1–21 (2012) [Google Scholar]
  6. J. Elger, C. Berndt, S. Krastel, D. J. Piper, F. Gross, R. F. Spielhagen, S. Meyer, The Fram Slide off Svalbard: a submarine landslide on a low-sedimentation-rate glacial continental margin. J. Geol. Soc. 172.2, pp. 153–156 (2015) [CrossRef] [Google Scholar]
  7. M. Urlaub, P. J. Talling, A. Zervos, D. Masson, What causes large submarine landslides on low gradient (<2°) continental slopes with slow (~0.15m/kyr) sediment accumulation?. J. Geophys. Res. Sol. Earth 120.10, pp. 6722–6739 (2015) [CrossRef] [Google Scholar]
  8. M. J. Hornbach, L. L. Lavier, C. D. Ruppel, Triggering mechanism and tsunamogenic potential of the Cape Fear Slide complex, US Atlantic margin. Geochem. Geophys. Geosys. 8.12 (2007) [Google Scholar]
  9. M. Urlaub, A. Zervos, P. J. Talling, D. G. Masson, C. I. Clayton, Submarine Mass Movements and Their Consequences pp. 277–287 (2012) [Google Scholar]
  10. H. Lee, J. Baraza, Geotechnical characteristics and slope stability in the Gulf of Cadiz. Mar. Geol. 155.1, pp. 173–190 (1999) [Google Scholar]
  11. J. Elger, C. Berndt, L. Rüpke, S. Krastel, F. Gross, W. Geissler, Submarine slope failures due to pipe structure formation. Nat. Com. 9.1, pp. 1–6. (2018) [Google Scholar]
  12. D. Archer, Methane hydrate stability and anthropogenic climate change. Biogeosciences 4, pp. 521–544 (2007) [Google Scholar]
  13. H. Haflidason, H. P. Sejrup, A. Nygård, J. Mienert, P. Bryn, R. Lien, C. F. Forsberg, K. Berg, D. Masson, The Storegga Slide: architecture, geometry and slide development. Mar. Geol. 213.1-4, pp. 201–234 (2004) [Google Scholar]
  14. B. A. Baudet, E. W. Ho, On the behaviour of deep-ocean sediments. Géotechnique 54.9, pp. 571–580 (2004) [CrossRef] [Google Scholar]
  15. H. G. Brandes, Geotechnical characteristics of deep-sea sediments from the North Atlantic and North Pacific oceans. Ocean Eng. 38.7, pp. 835–848 (2011) [CrossRef] [Google Scholar]
  16. C. Lee, T. S. Yun, J.-S. Lee, J. J. Bahk, J. C. Santamarina, Geotechnical characterization of marine sediments in the Ulleung Basin, East Sea. Eng. Geol. 117.1-2, pp. 151–158 (2011) [Google Scholar]
  17. H. Daigle, B. Dugan, Data Report: Permeability, consolidation, stress state, and pore system characteristics of sediments from sites C0011, C0012, and C0018 of the Nakai Trough. Proc. IODP 333.2 (2014) [Google Scholar]
  18. B. N. Madhusudhan, M. A. Clare, C. R. Clayton, J. E. Hunt, Geotechnical profiling of deep-ocean sediments at the AFEN submarine slide complex. Quart. J. Eng. Geol. Hydrogeo. 50.2, pp. 148–157 (2017) [CrossRef] [Google Scholar]
  19. D. G. Fredlund, H. Rahardjo, M. D. Fredlund, Unsaturated Soil Mechanics in Engineering Practice (2012) [Google Scholar]
  20. S. J. Wheeler, The stress-strain behaviour of soils containing gas bubbles. PhD Thesis, Univ. Oxford (1986) [Google Scholar]
  21. J. C. Sobkowicz, N. R. Morgenstern, The undrained equilibrium behaviour of gassy sediments. Can. Geotech. J. 21.3, pp. 439–448 (1984) [CrossRef] [Google Scholar]
  22. S. Nageswaran, Effect of gas bubbles on the sea bed behaviour. PhD Thesis, St. Catherine’s Col. Oxford (1983) [Google Scholar]
  23. G. C. Sills, S. J. Wheeler, The significance of gas for offshore operations. Cont. Shelf Res. 12.10, pp. 1239–1250 (1992) [Google Scholar]
  24. J. Grozic, P. Robertson, N. Morgenstern, The behaviour of loose gassy sand. Can. Geotech. J. 36.3, pp. 482–492 (1999) [CrossRef] [Google Scholar]
  25. J. Grozic, L., F. Nadim, T. J. Kvalstad, On the undrained shear strength of gassy clays. Comp. Geotech. 32.7, pp. 483–490 (2005) [CrossRef] [Google Scholar]
  26. Y. Wang, L. Kong, Y. Wang, M. Wang, M. Wang, Liquefaction response of loose gassy marine sand sediments under cyclic loading. Bul. Eng. Geol. Env. 77.3, pp. 963–976 (2018) [CrossRef] [Google Scholar]
  27. G. C. Sills, S. J. Wheeler, S. D. Thomas, J. N. Gardner, Behaviour of offshore soils containing gas bubbles. Géotechnique 41.2, pp. 227–241 (1991) [CrossRef] [Google Scholar]
  28. S. J. Wheeler, A conceptual model for soils containing gas bubbles. Géotechnique 38.3, pp. 389–397 (1988) [CrossRef] [Google Scholar]
  29. S. D. Thomas, The consolidation behaviour of gassy soil. PhD Thesis, Univ. Oxford (1987) [Google Scholar]
  30. G. C Sills, R. Gonzalez, Consolidation of naturally gassy soft soil. Géotechnique 51.7, pp. 629–639 (2001) [CrossRef] [Google Scholar]
  31. N. Sultan, V. de Gennaro, A. Puech, Mechanical behaviour of gas-charged marine plastic sediments. Géotechnique 62.9, pp. 751–766 (2012) [CrossRef] [Google Scholar]
  32. S. J. Wheeler, The undrained shear strength of soils containing gas bubbles. Géotechnique 38.3, pp. 399–413 (1988) [CrossRef] [Google Scholar]
  33. D. M. Wood, Soil Behaviour and Critical State Soil Mechanics (1990) [Google Scholar]
  34. N. Sultan, S. Garziglia, Mechanical behaviour of gas-charged fine sediments: model formulation and calibration. Géotechnique 64.11, pp. 851–864 (2014) [CrossRef] [Google Scholar]
  35. Z. Gao, Y. Hong, Constitutive modelling of gassy clay. E3S Web Conf. 92, IS-Glasgow (2019) [Google Scholar]
  36. Y, L. Hong, Wang, B. Yang, Undrained Shear Behaviour of Gassy Clay with Varying Initial Pore Water Pressures. Proc. China-Eur. Conf. Geotech. Eng. pp. 524–528 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.