Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 05037
Number of page(s) 7
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202126405037
Published online 02 June 2021
  1. Schuller B., Carius R., Mantl S. Optical and structural properties of β-FeSi2 precipitate layers in silicon, J. Appl. Phys. 94, No (1), pp. 207–211. DOI: 10.1063/1.1576902.(2003). [Google Scholar]
  2. Shteyman E.A., Vdovin V.I., Izotov A.N., Parkhomenko YU.N., Borun A.F. Fotolyuminestsentsiya i strukturnyye defekty sloyev kremniya, implantirovannykh ionami zheleza, Zhurnal Fizika tverdogo tela,46,(1), pp. 26–30. (2004). [Google Scholar]
  3. Maeda Y., Terai Y., Itakura M., Kuwano N., Thin Solid Films. (461). pp. 160–164. (2004). [Google Scholar]
  4. Normuradov M.T., Risbaev A.S., Khujaniyozov J.B., Normuradov D.A. Structure of МеSi Silicide Films (Me: Li, Rb, K and Cs) According to Electron Microscopy Data and the Diffraction of Slow Electrons, Journal of Surface Investigation, 14, (5), pp. 1066–1071. DOI: 10.1134/S 1027451020050365.(2020). [Google Scholar]
  5. Rysbaev A.S., Normurodov M.T., Rakhimov A.M., Tursunmetova Z.A., Tashatov A.K. High-Sensitivity Temperature Sensor on the Basis of Single-Crystal Si(111) Implanted from Multiple Directions with P+ and B+ Ionn, Journal of Surface Investigation, 14, No (6), pp. 1168–1173. DOI: 10.1134/S1027451017020318.(2020). [Google Scholar]
  6. Rysbaev A.S., Khuzhaniyazov Z.B., Rakhimov A.M., Bekpulatov I.R. Formation of nanosize silicides films on the Si(111) and Si(100) surfaces by low-energy ion implantation, Technical Physics, 59, (10), pp. 1526–1530. DOI: 10.1134/S1063784214100272.( 2014). [Google Scholar]
  7. Rysbaev A.S., Tashatov A.K., Dzhuraev S.X., Arzikulov G., Nasriddinov S.S. On new two-dimensional structures produced on the Si (111) and Si (100) surface upon molecular-beam epitaxy of cobalt and silicon. Journal of Surface Investigation, 5, (6), pp. 1193–1196. DOI: 10.1134/S1027451011100193.( 2011). [Google Scholar]
  8. Risbaev A.S., Khujaniyazov J.B., Bekpulatov I.R., Rakhimov A.M. Method for additional purification of the surface of Si(111) single crystal, Journal of Surface Investigation, 11, (5), pp. 994–999. DOI: 10.1134/S1027451017050135.(2017). [Google Scholar]
  9. Kamilov T.S., Rysbaev A.S., Klechkovskaya V.V., Orekhov A.S., Igamov B.D., Bekpulatov I.R. The Influence of Structural Defects in Silicon on the Formation of Photosensitive Mn4Si7–Si(Mn)–Mn4Si7 and Mn4Si7–Si(Mn)–M Heterostructures. Applied Solar Energy (English translation of Geliotekhnika), 55, (6), pp. 380–384. DOI: 10.3103/S0003701X19060057. (2019). [Google Scholar]
  10. Umirzakov B.E., Ashurov R.K., Donaev S.B. The Morphology and Electronic Properties of Si Nanoscale Structures on a CaF 2 Surface. Technical Physics, 64, (2), pp. 232–235. DOI:10.1134/S1063784219020269. (2019). [Google Scholar]
  11. Rysbaev A.S., Khuzhaniyazov Z.B., Normuradov M.T., Rakhimov A.M., Bekpulatov I.R. Peculiarities of the electron structure of nanosized ion-implanted layers in silicon. Technical Physics, 59, (11), pp. 1705–1710. DOI:10.1134/S106378421411022X. (2014). [Google Scholar]
  12. Umirzakov B.E., Donaev S.B. On the creation of ordered nuclei by ion bombardment for obtaining nanoscale Si structures on the surface of CaF2 films, Journal of Surface Investigation, 11, (4), pp. 746–748. doi: 10.1134/S1027451017040139. (2017). [Google Scholar]
  13. Donaev S.B., Djurabekova F., Tashmukhamedova D.A. and Umirzakov B.E. Formation of nanodimensional structures on surfaces of GaAs and Si by means of ion implantation. Physica status solidi 12 (1-2), pp.89–93. https://doi.org/10.1002/pssc.201400156. (2015). [Google Scholar]
  14. Rysbaev A.S., Khujaniyozov J.B., Normuradov M.T., Igamov B.D., Abraeva S.T. Theoretical Explanation of the Effect of a Decrease in the Si(111) Plasmon Energy during the Implantation of Ions with a Large Dose, Journal of Surface Investigation, 14, (4), pp. 816–822. https://doi.org/10.1134/S102745102004031X. (2020). [Google Scholar]
  15. Rysbaev A.S. Variation of the secondary-emission properties of the surface of single crystals of silicon under conditions of ion implantation and subsequent annealing. Radiotekhnika i Elektronika, 46, (7), pp. 883–885. (2001). [Google Scholar]
  16. Umirzakov B.E., Tashmukhamedova D.A., Ruzibaeva M.K., Donaev S.B., Mavlyanov B.B. Analysis of the structure and properties of heterostructured nanofilms prepared by epitaxy and ion implantation methods. Technical Physics, , 58, (9), pp. 1383–1386. https://doi.org/10.1134/S1063784213090260. (2013). [Google Scholar]
  17. Umirzakov B.E., Tashmukhamedova D.A., Ruzibaeva M.K., Djurabekova F.G., Danaev S.B. Investigation of change of the composition and structure of the CaF 2/Si films surface at the low-energy bombardment. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, (326), pp. 322–325.( 2014). [Google Scholar]
  18. Rysbaev A.S., Normuradov M.T., Yuldashev Yu.Yu., Nasriddinov S.S. The effect of implantation of low-energy ions on the density of states of valence electrons in silicon, Radiotekhnika i Elektronika, 42, (2), pp. 240–242. (1997). [Google Scholar]
  19. Donaev S.B., Tashatov A.K., Umirzakov B.E. Effect of Ar+-ion bombardment on the composition and structure of the surface of CoSi2/Si(111) nanofilms. Journal of Surface Investigation, 9, (2), pp. 406–409. https://doi.org/10.1134/S1027451015020263. (2015) [Google Scholar]
  20. Isakhanov Z.A., Umirzakov Y.E., Ruzibaeva M.K., Donaev S.B. Effect of the O2+-ion bombardment on the TiN composition and structure. Technical Physics. 60, No (2), pp. 313–315. https://doi.org/10.1134/S1063784215020097. (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.