Open Access
Issue
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
Article Number 01095
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202128801095
Published online 14 July 2021
  1. É.M. Shneerson, Digital Relay Protection [in Russian], Énergoatomizdat, Moscow (2007). [Google Scholar]
  2. Svistunov N.A. Principles of construction systems of relay protection and automation based on microprocessor devices // Izvestiya Tula State University. Technical science. - 2016. - N°12-3. P. 92–95. [Google Scholar]
  3. Glazyrin, V.E. Analysis of the influence of transient processes in current transformers on remote elements’behavior using mathematical models / V.E. Glazyrin, E.I. Frolova // Electro. Electrical engineering, power engineering, electrical industry. - 2012. - No. 4. - S. 9–14. [Google Scholar]
  4. A. Wavelet-Based Transformer Differential Protection With Differential Current Transformer Saturation and Cross-Country Fault Detection // R. Medeiros; F. Costa / IEEE Transactions on Power Delivery. - 2018. - Vol.22, Iss.2, P. 789–799. - DOI: 10.1109/TPWRD.2017.2764062. [Google Scholar]
  5. Kasztenny B., Mazereeuw J., Jones K. CT saturation in industrial applications - analysis and application guidelines [Electronic resource] // GE Grid Solutions. Available at: URL: https://store.gegridsolutions.com/faq/Documents/General/GET-8501.pdf. Accessed to: March 29, 2019. [Google Scholar]
  6. Kuzhekov SL, Degtyarev AA. On the Coordination of Current Transformers and Relay Protection and Automation Operation of Electric-Power Systems in Transient Short-Circuit States. Electrical Engineering. 2017;12:65–72. [Google Scholar]
  7. Kuzhekov S., Degtyarev A., Vorobev, V. Determination of time prior saturation of the current transformers in transient short-circuit mode. Power stations. 2017;1:42–47. [Google Scholar]
  8. Drozdov, AD Electric circuits with ferromagnetic elements in relay protection / AD Drozdov [and others]; ed. V.V. Platonov - 2nd ed., Revised. and add. - M.: Energoatomizdat, 1986.-- 256 p. [Google Scholar]
  9. Naumov, VA Mathematical models of current transformer in analysis of algorithms of differential protection / VA Naumov, VM Shevtsov // Elektr. stations - 2003. - No. 3. - P. 51–56. [Google Scholar]
  10. Guerra, F.F. Current transformer model / F.F. Guerra, W.S. Mota // IEEE Transactions on Power Delivery. - 2007. - Vol. 22, X°1 - P. 187–194. [Google Scholar]
  11. U.D. Annakkage, P.G. McLaren, E. Dirks, R.P. Jayasinghe, A.D. Parker, “A current transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis”, IEEE Transactions on Power Delivery, vol. 15, pp. 57–61, 2000. [Google Scholar]
  12. M. Kezunovic, “Experimental Evaluation of EMTP- based Current Transformer Models for Protective Relay Transient Study”, IEEE Transactions on Power Delivery, vol. 9, issue. 1, pp. 405–413, 1994. [Google Scholar]
  13. I.I. Litvinov, A.A. Osintsev, V.E. Glazirin, “Characteristic features of internal and external faults for use in differential protection”, Advances in Engineering Research, vol.133, pp. 425–432, 2017. [Google Scholar]
  14. Glazyrin, VE Modeling of transient processes in groups of current transformers / VE Glazyrin, GE Toropov // Sb. scientific. tr. NSTU. - Novosibirsk: Publishing house of NSTU. - 2000. - No. 3 (20). - S. 75–82. [Google Scholar]
  15. Sop'yanik, V.Kh. Computer calculation of transient and steady-state processes in current transformers and current circuits of the relay protection / V.Kh. Sop'yanik // Electric stations - 2004. - No. 2. - P. 48–52. [Google Scholar]
  16. Prutik, AF Modeling of relay protection and automation in the concept of all-mode modeling of electric power systems / AF Prutik // Modern equipment and technologies: collection of articles. tr. XVI int. scientific-practical conf. students, graduate students and young scientists: in 3 volumes - Tomsk: Publishing house of Vol. polytechnic unta, 2010. - T. 1. - S. 101–102.RD 153-34.0-35.301-2002. Instructions for checking current transformers used in relay protection and measurement circuits. [in Russian] - Introduction. 03/01/2003. - M.: SPO ORGRES, 2003.-- 152 p. [Google Scholar]
  17. Korol E.G. Analysis of modeling methods of the magnetic characteristics of electromagnets for the magnetic field compensation in electrical equipment [in Russian] // Electrical Engineering and Electromechanics. - 2007. - No. 2. - p. 31–34. [Google Scholar]
  18. Realization of distance protection operating characteristic / A.A. Osintsev, E.I. Frolova, A.E. Gozhenko // New in the Russian electric power industry: scientific and technical. electron. zhurn. - 2017. - No. 4. - P. 64–70. [Google Scholar]
  19. Recommendations for settings calculation of backup protection of high voltage transmission lines based on terminals of NPP "EKRA" [Electronic resource] // Recommendations for calculating settings. - NPP EKRA LLC, 2012. - Access mode: https://www.ekra.ru/engine/download.php?id=3738. - Title from the screen. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.