Open Access
Issue
E3S Web Conf.
Volume 323, 2021
V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021)
Article Number 00017
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202132300017
Published online 10 November 2021
  1. Z. Yao, Z. Q. Qian, R. Li, E. Hu. Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy. Energy, 2019, 991–1006. [CrossRef] [Google Scholar]
  2. A. Radchenko, E. Trushliakov, K. Kosowski, D. Mikielewicz, M. Radchenko. Innovative turbine intake air cooling systems and their rational designing. Energies, 2020, 13(23), 6201. DOI: 10.3390/en13236201. [CrossRef] [Google Scholar]
  3. N. Bistrovic, D. Bernecic. Energy efficiency in maritime transport. 18th Annual General Assembly of the International Association of Maritime Universities - Global Perspectives in MET: Towards Sustainable, Green and Integrated Maritime Transport, IAMU, Vol. 32017, 2017, 4750. [Google Scholar]
  4. E. Trushliakov, A. Radchenko, M. Radchenko, S. Kantor, O. Zielikov. The Efficiency of Refrigeration Capacity Regulation in the Ambient Air Conditioning Systems In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing III. LNME, 2000. 343–353. DOI: 10.1007/978-3-030-50491-5_33. [Google Scholar]
  5. F. Baldi, F. Ahlgren, T.V. Nguyen, M. Them, K. Andersson. Energy and exergy analysis of a cruise ship. Energies, Vol. 11, No. 10, 2018. [Google Scholar]
  6. A.A. Manzela, S.M. Hanriot, L.C. Gomez, J.R. Sodre. Using engine exhaust gas as energy source for an absorption refrigeration system. Appl. Energy, Vol. 8, 2010, 1141–1148. [CrossRef] [Google Scholar]
  7. D. Steffens. The Diesel Engine and the Environment. Session Chair - Wayne Cole, Houston, Texas: Cole Engineering, 2003, p. 36. [Google Scholar]
  8. Diesel Engines for Independent Power Producers and Captive Power Plants. MAN-Burmeister & Wain Diesel A/S: Copenhagen, Denmark, 2001, 352–399. [Google Scholar]
  9. Project Guide Two-stroke Engines. MC Programme. Copenhagen, Vol. 1, 1986. [Google Scholar]
  10. K. Danilecki, J. Eliasz. The Potential of Exhaust Waste Heat Use in a Turbocharged Diesel Engine for Charge Air Cooling. SAE Technical Paper 2020-01-2089, 2020. [Google Scholar]
  11. R. Cipollone, D. Di Battista, D. Vittorini. Experimental assessment of engine charge air cooling by a refrigeration unit. Energy Procedia, 2017, 1067–1074. [CrossRef] [Google Scholar]
  12. L. Guzzella, A. Amstutz. Control of diesel engines. IEEE Control Systems, Vol. 18(5), 1998, 53–71. DOI: 10.1109/37.722253. [CrossRef] [Google Scholar]
  13. A.G. Stefanopoulou, I. Kolmanovsky, J.S. Freudenberg: Control of variable geometry turbocharged diesel engines for reduced emissions. IEEE Transactions on Control Systems Technology, Vol. 8(4), 2000, 733–745. [CrossRef] [Google Scholar]
  14. M. Radchenko, R. Radchenko, V. Tkachenko, S. Kantor, E. Smolyanoy. Increasing the Operation Efficiency of Railway Air Conditioning System on the Base of Its Simulation Along the Route Line. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds) Integrated Computer Technologies in Mechanical Engineering. AISC, 2020, vol 1113. Springer, Cham, 461–467. DOI: 10.1007/978-3-030-37618-5_39. [CrossRef] [Google Scholar]
  15. V. Kornienko, R. Radchenko, D. Konovalov, A. Andreev, M. Pyrysunko Characteristics of the Rotary Cup Atomizer Used as Afterburning Installation in Exhaust Gas Boiler Flue In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing III. LNME, 2000. 302–311. DOI: 10.1007/978-3-030-50491-5_29. [Google Scholar]
  16. M. Jonsson, J. Yan. Humidified gas turbines - a review of proposed and implemented cycles. Energy, No. 30, 2005, 1013–1078. [CrossRef] [Google Scholar]
  17. W.R. Sexton, M.R. Sexton. The Effects of Wet Compression on Gas Turbine Engine Operating Performance. Proceedings of GT2003 ASME Turbo Expo: Power for Land, Sea and Air 2009, Atlanta, Georgia, USA, 2009. DOI: 10.1115/GT2003-38045. [Google Scholar]
  18. D. Konovalov, H. Kobalava, V. Maksymov, R. Radchenko, M. Avdeev. Experimental research of the excessive water injection effect on resistances in the flow part of a low-flow aerothermopressor. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing III. LNME, 2000, 292–301. DOI: 10.1007/978-3-030-50491-528. [Google Scholar]
  19. A. Fowle. An experimental investigation of an aerothermopressor having a gas flow capacity of 25 pounds per second. Massachusetts Institute of Technology, USA, 1972. [Google Scholar]
  20. A.H. Shapiro, K.R. Wadleigh: The Aerothermopressor - a Device for Improving the Performance of a Gas-Turbine Power Plant. Proceedings of the Trans. ASME, Cambridge, USA, 1956, 617–653. [Google Scholar]
  21. D. Konovalov, H. Kobalava, M. Radchenko, I.C. Scurtu, R. Radchenko. Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling. In: TE-RE-RD 2020, E3S Web of Conferences 180, 01012, 2020, 14 p. [Google Scholar]
  22. D. Konovalov, H. Kobalava, M. Radchenko, V. Sviridov, I.C. Scurtu. Optimal Sizing of the Evaporation Chamber in the Low-Flow Aerothermopressor for a Combustion Engine. Advanced Manufacturing Processes II. InterPartner 2020. LNME, 2021, 654–663. DOI: 10.1007/978-3030-68014-563. [Google Scholar]
  23. H.W. Oh. Advanced Fluid Dynamics. Rijeka, Croatia, 2012, 282 p. [Google Scholar]
  24. S.K. Wang. Handbook of air conditioning and refrigeration, Second Edition ed., McGraw-Hill, 2000, 1401 p. [Google Scholar]
  25. L. Bohdal, L. Kukielka, S. Swillo, A. Radchenko, A. Kulakowska. Modelling and experimental analysis of shear-slitting process of light metal alloys using FEM, SPH and vision-based methods. AIP Conference Proceedings 2078, 020060, 2019, DOI: 10.1063/1.5092063. [CrossRef] [Google Scholar]
  26. K.G. Chandra, D.D. Kale. Pressure drop for two-phase air-non-newtonian liquid flow in static mixers. The Chemical Engineering Journal and The Biochemical Engineering Journal, V. 59, No. 3, 1995, 277–280. [CrossRef] [Google Scholar]
  27. L. Bohdal, L. Kukielka, A. Radchenko, R. Patyk, M. Kulakowski, J. Chodór. Modelling of guillotining process of grain oriented silicon steel using FEM. AIP Conference Proceedings 2078, 020080, 2019, DOI: 10.1063/1.5092083. [CrossRef] [Google Scholar]
  28. CEAS Engine Calculations. MAN Diesel Turbo. URL: https://marine.man-es.com/two-stroke/ceas. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.