Open Access
Issue |
E3S Web of Conf.
Volume 507, 2024
International Conference on Futuristic Trends in Engineering, Science & Technology (ICFTEST-2024)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202450701010 | |
Published online | 29 March 2024 |
- M. Jahanbakht, W. Xiang, L. Hanzo, and M. RahimiAzghadi, IEEE Communications Surveys & tutorials, vol. 23, No. 2, second quarter 2021(2021) [Google Scholar]
- M. Valdenegro-Toro,Object Recognition in Forward-Looking Sonar Images with Convolutional Neural Networks, 978-1-5090-1537-5/16, IEEE(2016) [Google Scholar]
- Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, IEEE Transactions on “Pattern Analysis and Machine Intelligence” (2016) [Google Scholar]
- J. Redmon, Santosh Divvala, Ross Girshick, A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection IEEE” (2016) [Google Scholar]
- Mohammad yaseliani, Ali zenial hamadani, Abtinijadimaghsoodi, and Amir mosavi, IEEE Access, volume 10 (2022) [Google Scholar]
- Md. Farukh Hashmi, SatyarthKatiyar, AbdulWahab Hashmi & Avinash G. keskar, “Pneumonia detection in chest X-ray images using compound scaled deep learning model”, Journal for control, measurement, electronics, computing and communications, volume 62, 2021(2021) [Google Scholar]
- MehediMasud, Anupam Kumar Bairagi, Abdullah-Al Nahid, NiloySikder, Saeed Rubaiee, Anas Ahmed, and DivyaAnand, “A Pneumonia Diagnosis Scheme Based on Hybrid Features Extracted from Chest Radiographs Using an Ensemble Learning Algorithm” Volume 2021, Article ID 8862089 (2021) [Google Scholar]
- Widodo, Chomsin S., Naba, Agus, Mahasin, Muhammad M., Yueniwati, Yuyun, Putranto, TerawanA., Patra, Pangeran, UBNet: “Deep learning-based approach for automatic X-ray image detection of pneumonia and COVID-19 patients, Journal of XRay Science and Technology”, vol. 30, No. 1, pp. 57-71(2022) [Google Scholar]
- U. Masud, T. Saeed, H. M. Malaikah, F. U. Islam and G. Abbas, “Smart Assistive System for Visually Impaired People Obstruction Avoidance Through Object Detection and Classification,” in IEEE Access, vol. 10, pp. 13428–13441(2022) [CrossRef] [Google Scholar]
- M.vadivel, S.Vimal, V. G. Sivakumar, V. V. Baskar and M. Selvi, International Conference on Innovative Data Communication Technologies and Application (ICIDCA), Uttarakhand, India, 2023, pp. 1055–1059 (2023) [Google Scholar]
- A. U. Kulkarni, A. M. Potdar, S .Hegde and V. P. Baligar, 1st International Conference on Advances in Information Technology (ICAIT), Chikmagalur, India, 2019, pp. 204–209 (2019) [Google Scholar]
- H. Thanh Le, S. L. Phung, P. B. Chapple, A. Bouzerdoum, C. H. Ritz and L. C. Tran, “Deep Gabor Neural Network for Automatic Detection of Mine-Like Objects in Sonar Imagery,” in IEEE Access, vol. 8, pp. 94126–94139 (2020) [Google Scholar]
- G. Huo, Z. Wu and J. Li, “Underwater Object Classification in Sidescan Sonar Images Using Deep Transfer Learning and Semisynthetic Training Data,” in IEEE Access, vol. 8, pp. 47407–47418 (2020) [CrossRef] [Google Scholar]
- A. R. Mishra, S. K. Pippal, Asif, A. Kumar, D. Singh and A. Singh, 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 2021, pp. 1–5 (2021) [Google Scholar]
- W. Wei, F. Zang, L. Huang and W. Xue, International Conference on Networking and Network Applications (NaNA), Qingdao, China, 2023, pp. 539–544 (2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.