Open Access
Issue
E3S Web Conf.
Volume 114, 2019
International Conference of Young Scientists “Energy Systems Research 2019”
Article Number 07003
Number of page(s) 4
Section Thermodynamics
DOI https://doi.org/10.1051/e3sconf/201911407003
Published online 04 September 2019
  1. V.V. Panov, O.S. Misnikov, Modern trends in the development of the peat industry in Russia. Trydi Instorfa 11 pp. 3–12. (2018) [Google Scholar]
  2. S.S.A. Syed-Hassan, Y. Wang, S. Hu, S. Su and J. Xiang, Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renewable and Sustainable Energy Reviews 80 pp. 888–913 (2017) DOI: 10.1016/j.rser.2017.05.262 [CrossRef] [Google Scholar]
  3. M. Reza, Hydrothermal carbonization of lignocellulosic biomass, Ph.D. thesis (2013). [Google Scholar]
  4. K.O. Krysanova, V.M. Zaichenko, G.A. Sychev et al. Solid Fuel Chem. 52 pp. 370 (2018). [CrossRef] [Google Scholar]
  5. S. D. Beskov, Technochimicheskie rascheti, Vishaya sckola: Chimiya, Moscow (1962). [Google Scholar]
  6. T. Wang, Y. Zhai, Y. Zhu, C. Li, G. Zeng, Guangming, A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renewable and Sustainable Energy Reviews 90 (2018). [Google Scholar]
  7. M. Sevilla, A. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47 pp. 2281–2289 (2009) DOI: 10. 1016/j.carbon.2009.04.026. [Google Scholar]
  8. A. Smith, S. Singh, A. Ross, Fate of inorganic material during hydrothermal carbonisation of biomass: Influence of feedstock on combustion be-haviour of hydrochar. Fuel 169 135–145 (2016). [CrossRef] [Google Scholar]
  9. A. Funke, F. Ziegler, Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod Biorefin 160 pp. 77 (2010). [Google Scholar]
  10. M.T. Reza, J.G. Lynam, M.H. Uddin, C.J. Coronella, Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49 pp. 86–94 (2013). [Google Scholar]
  11. T. R. K. C. Doddapaneni, R. Jain, P. Ramasamy, J. Rintala, H. Romar, J. Konttinen, Adsorption of furfural from torrefaction condensate using torre_ed biomass. Chemical Engineering Journal 334 pp. 558 (2018) DOI: 10.1016/j.cej.2017.10.053. [CrossRef] [Google Scholar]
  12. H. Kambo, A. Dutta, Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production ofsolid biofuel. Energy Conversion and Management 105 pp. 746 (2015) [Google Scholar]
  13. R. Pradhan, Bio-carbon Production by Oxidation and Hydrothermal Carbonization of Paper Recycling Black Liquor. Journal of Cleaner Production 213 (2018) 10.1016/j.jclepro.2018.12.175. [Google Scholar]
  14. H. Liu, C. Yingquan, Y. Haiping, F. Gentili, Francesco, U. Söderlind, X. Wang, W. Zhang, H. Chen, Hydrothermal carbonization of natural microalgae containing a high ash content. Fuel. 249 pp. 441-448 (2019) 10.1016/j.fuel.2019.03.004. [CrossRef] [Google Scholar]
  15. Z. Yao, X. Ma, Hydrothermal carbonization of Chinese fan palm. Bioresource Technology 282 (2019) 10.1016/j.biortech.2019.02.130. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.