Open Access
Issue
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
Article Number 02046
Number of page(s) 6
Section Symposium on Electrical, Information Technology, and Industrial Engineering
DOI https://doi.org/10.1051/e3sconf/202346502046
Published online 18 December 2023
  1. C. R. Hung, S. Völler, M. Agez, G. Majeau-Bettez, and A. H. Strømman, “Regionalized climate footprints of battery electric vehicles in Europe,” J. Clean. Prod., vol. 322, no. 129052, p. 129052, 2021, doi: 10.1016/j.jclepro.2021.129052. [CrossRef] [Google Scholar]
  2. A. Ajanovic and R. Haas, “Economic and environmental prospects for battery electric‐ and fuel cell vehicles: A review,” Fuel Cells, vol. 19, no. 5, pp. 515–529, 2019, doi: 10.1002/fuce.201800171. [CrossRef] [Google Scholar]
  3. E. Pipitone, S. Caltabellotta, and L. Occhipinti, “A life cycle environmental impact comparison between traditional, hybrid, and electric vehicles in the European context,” Sustainability, vol. 13, no. 19, p. 10992, 2021, doi: 10.3390/su131910992. [CrossRef] [Google Scholar]
  4. J. Ruan, P. Walker, and N. Zhang, “A comparative study energy consumption and costs of battery electric vehicle transmissions,” Appl. Energy, vol. 165, pp. 119–134, 2016, doi: 10.1016/j.apenergy.2015.12.081. [CrossRef] [Google Scholar]
  5. Z. Liu et al., “Comparing total cost of ownership of battery electric vehicles and internal combustion engine vehicles,” Energy Policy, vol. 158, no. 112564, p. 112564, 2021, doi:10.1016/j.enpol.2021.112564. [CrossRef] [Google Scholar]
  6. Pemerintah Indonesia, “Perpres Nomor 55 Tahun 2019 Percepatan Program Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) untuk Transportasi Jalan.” 2019. [Google Scholar]
  7. Pemerintah Indonesia, “Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 Tentang RUEN (rencana umum energi nasional),” 2017. [Google Scholar]
  8. Pemerintah Indonesia, “Instruksi Presiden Nomor 7 Tahun 2022 Tentang Penggunaan Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) Sebagai Kendaraan Dinas Operasional dan/atau Kendaraan Perorangan Dinas Instansi Pemerintah Pusat dan Pemerintahan Daerah,” 2022. [Google Scholar]
  9. Pemerintah Indonesia, “Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 13 Tahun 2020 Tentang Penyediaan Infrastruktur Pengisian Listrik Untuk Kendaraan Listrik Berbasis Baterai,” 2020. [Google Scholar]
  10. Pemerintah Indonesia, “Peraturan Menteri Perindustrian Nomor 27 Tahun 2020 Tentang Spesifikasi, Peta Jalan Pengembangan, dan Ketentuan Penghitungan Tingkat Komponen Dalam Negeri Kendaraan Bermotor Dalam Negeri Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicl,” 2020. [Google Scholar]
  11. Q. Chen, K. Huang, and M. R. Ferguson, “Capacity expansion strategies for electric vehicle charging networks: Model, algorithms, and case study,” Nav. Res. Logist., vol. 69, no. 3, pp. 442– 460, 2022, doi: 10.1002/nav.22027. [CrossRef] [Google Scholar]
  12. I. E. Agency, Global EV Outlook 2022: Securing supplies for an electric future. OECD, 2022. doi: 10.1787/c83f815c-en. [CrossRef] [Google Scholar]
  13. G. A. Covic, J. T. Boys, M. Budhia, and C.-Y. Huang, “Electric Vehicles–Personal transportation for the future,” World Electr. Veh. J., vol. 4, no. 4, pp. 693–704, 2010. [CrossRef] [Google Scholar]
  14. T. Hofman and C. H. Dai, “Energy efficiency analysis and comparison of transmission technologies for an electric vehicle,” 2010 IEEE Vehicle Power and Propulsion Conference. IEEE, 2010. doi: 10.1109/vppc.2010.5729082. [Google Scholar]
  15. H. H. Wu, A. Gilchrist, K. Sealy, P. Israelsen, and J. Muhs, “A review on inductive charging for electric vehicles,” 2011 IEEE International Electric Machines & Drives Conference (IEMDC). IEEE, 2011. doi: 10.1109/iemdc.2011.5994820. [Google Scholar]
  16. N. Bento, “Building and interconnecting hydrogen networks: Insights from the electricity and gas experience in Europe,” Energy Policy, vol. 36, no. 8, pp. 3019–3028, 2008, doi: 10.1016/j.enpol.2008.04.007. [CrossRef] [Google Scholar]
  17. M. Kuby and S. Lim, “The flow-refueling location problem for alternative-fuel vehicles,” Socioecon. Plann. Sci., vol. 39, no. 2, pp. 125–145, 2005, doi: 10.1016/j.seps.2004.03.001. [CrossRef] [Google Scholar]
  18. P. Leiby and J. Rubin, “Understanding the transition to new fuels and vehicles,” in The Hydrogen Energy Transition, Elsevier, 2004, pp. 191–212. doi: 10.1016/b978-012656881-3/50014-9. [Google Scholar]
  19. M. W. Melaina, “Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen,” Energy Policy, vol. 35, no. 10, pp. 4919–4934, 2007, doi: 10.1016/j.enpol.2007.04.008. [CrossRef] [Google Scholar]
  20. Y.-W. Wang and C.-R. Wang, “Locating passenger vehicle refueling stations,” Transp. Res. Part E Logist. Trans. Rev., vol. 46, no. 5, pp. 791– 801, 2010, doi: 10.1016/j.tre.2009.12.001. [CrossRef] [Google Scholar]
  21. M. J. Hodgson, “A flow-capturing location-allocation model,” Geogr. Anal., vol. 22, no. 3, pp. 270–279, 1990. [Google Scholar]
  22. M. Kuby and S. Lim, “The flow-refueling location problem for alternative-fuel vehicles,” Socioecon. Plann. Sci., vol. 39, no. 2, pp. 125–145, 2005. [CrossRef] [Google Scholar]
  23. S. A. Mirhassani and R. Ebrazi, “A flexible reformulation of the refueling station location problem,” Transp. Sci., vol. 47, no. 4, pp. 617– 628, 2013. [CrossRef] [Google Scholar]
  24. B. Yıldız, O. Arslan, and O. E. Karaşan, “A branch and price approach for routing and refueling station location model,” Eur. J. Oper. Res., vol. 248, no. 3, pp. 815–826, 2016. [CrossRef] [Google Scholar]
  25. H. Yılmaz and B. Yagmahan, “Range coverage location model: An optimization model for the charging station location problem in a transportation network to cover intercity travels,” Int. J. Energy Res., vol. 46, no. 2, pp. 1538–1552, 2022. [CrossRef] [Google Scholar]
  26. H. de Vries and E. Duijzer, “Incorporating driving range variability in network design for refueling facilities,” Omega, vol. 69, pp. 102–114, 2017. [CrossRef] [Google Scholar]
  27. M. Kchaou Boujelben and C. Gicquel, “Efficient solution approaches for locating electric vehicle fast charging stations under driving range uncertainty,” Comput. Oper. Res., vol. 109, pp. 288–299, 2019. [CrossRef] [MathSciNet] [Google Scholar]
  28. Capar, I., & Kuby, M. (2012). An efficient formulation of the flow refueling location model for alternative-fuel stations. Iie Transactions, 44(8), 622-636. [CrossRef] [Google Scholar]
  29. Chung, S. H., & Kwon, C. (2015). Multi-period planning for electric car charging station locations: A case of Korean Expressways. European Journal of Operational Research, 242(2), 677-687. [CrossRef] [Google Scholar]
  30. Davidov, S. (2020). Optimal charging infrastructure planning based on a charging convenience buffer. Energy, 192, 116655. [CrossRef] [Google Scholar]
  31. Hosseini, M., MirHassani, S. A., & Hooshmand, F. (2017). Deviation-flow refueling location problem with capacitated facilities: Model and algorithm. Transportation Research Part D: Transport and Environment, 54, 269-281. [CrossRef] [Google Scholar]
  32. Rothschild, B., & Whinston, A. (1966). On two commodity network flows. Operations Research, 14(3), 377-387. [CrossRef] [Google Scholar]
  33. Schwimmer, E., Gomez-Ibanez, J. A., & Casady, C. (2019). Tollmanaged lane pioneers: Lessons from five US states. Case Studies on Transport Policy, 7(3), 655-666. [CrossRef] [Google Scholar]
  34. Soriguera, F., Rosas, D., & Robusté, F. (2010). Travel time measurement in closed toll highways. Transportation Research Part B: Methodological, 44(10), 1242-1267. [CrossRef] [Google Scholar]
  35. S. A. Mirhassani and R. Ebrazi, “A flexible reformulation of the refueling station location problem,” Transp. Sci., vol. 47, no. 4, pp. 617–628, 2013. [Google Scholar]
  36. Toregas, C., Swain, R., ReVelle, C., & Bergman, L. (1971). The location of emergency service facilities. Operations research, 19(6), 1363-1373. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.